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Abstract—The coordination and control of the agents in
electrical networks is expected to have an important positive
impact in future smart-grids. In the present paper we propose
a distributed hierarchical coordination framework for power
balancing, and the algorithms required to build such coordination
architecture. This architecture is built such that a group of agents
(a subtree of the hierarchy) can respond and adjust to deviations
from a day-ahead plan for that group, without the need to
coordinate with its upper levels of the hierarchy at every time
step. The agents are arranged in groups by taking into account
a measure of the flexibility of each group, thus allowing a partial
de-coupling of the groups during the coordination, which reduces
the required work of the central coordinator and gives robustness
to the system. The assignment of agents to groups is formulated
as a welfare maximization problem, a NP-hard problem for which
an approximate solution can be obtained efficiently by using the
sub-modularity and monotonicity of the involved functions. An
electric vehicle charging coordination scenario is presented to
exemplify the proposed architecture and methods.

I. INTRODUCTION

The balancing of generation and consumption patterns is
crucial for the operation of the electric power system (e.g. in
the frequency stability of the network), and for reducing the
generation costs. To perform such balancing, the traditional
solution has been to modulate the generation, and to a smaller
degree, to use demand response methods and dynamic pricing
schemes [1][2][3]. The introduction of smart-grid technologies
[4] –in particular the ability to sense in real-time the power
usage and generation of every network agent in a energy man-
agement system (appliances, storage, etc.)–, together with the
growing capability for controlling and scheduling the power
usage of those agents, and the increasing use of renewable
local generation and mobile loads, is allowing and requiring
balancing techniques that can be managed by the demand side
instead of being managed by the utility. This, in addition to
open new market opportunities [5], and together with the rapid
introduction of renewable local generation, local storage, and
electric vehicles (EV), is pushing to completely rethink and
redesign the role of the stakeholders in power networks [4].

We are interested in allowing demand-side coordination
and control of power consumption and generation, where a
group of agents (households, factories, dwellings, etc.) can
coordinate and balance its aggregated power consumption
patterns. Thus, allowing the group of agents to reduce their
energy consumption cost1 and environmental impact, and also

1We assume the community buys energy from the utility, and that this
cost is related to its power usage pattern. We do not analyze how this cost is
calculated or split, but we focus on how to coordinate the power usage pattern.

to increase the predictability of their aggregated power usage,
with all the benefits that this brings to the grid.

Within this context we propose a distributed hierarchical
coordination framework for community power balancing that
builds on [6] (briefly presented in Section II), where a dis-
tributed coordination profile-based negotiation was introduced.
We start by noting (in Section III) that the coordination
problem in [6] can be reformulated as a nested sharing
problem, where the coordination can be done among groups
of agents, and where each of these groups solves a smaller
sharing problem. This allows each group of agents to partially
adjust to deviations from its planned power usage profile,
without the need to coordinate with other groups at every time
step. The hierarchical architecture is built (in Section IV) by
grouping the agents seeking that the flexibility of each group is
maximized, so that each group can adjust to deviations from
their planned power profile. This is formulated as a welfare
maximization problem [7], for which an approximated solution
can be obtained efficiently using the sub-modularity [7] [8] of
the involved functions. For doing the grouping, a measure of
the flexibility of a group, based on the entropy of the distri-
bution of its aggregate profile, is proposed. To exemplify the
proposed architecture, we present an EV coordination scenario
(in Section V) where a group can deal with deviations without
the need to coordinate with upper levels of the hierarchy
at every time step. In Section VI we conclude and discuss
possible extensions, such as complementary welfare measures
to use during the grouping in order to take into account the
topology of the distribution network and the geographical
dispersion of the agents.

We assume an incentive-based program where a group of
participants get a reward for achieving some demand-shape
profiles, or where the group of participants tries to minimize its
aggregated power usage cost in a price-based demand response
program. Thus, a group of users (a community) coordinate its
aggregated power consumption profile for a given period of
time (e.g. for the next day) and commits to follow that profile.
The coordination is done by taking into account a global
cost function associated to the aggregated profile, but also the
consumption patterns and preferences of each user. We assume
that the appliances coordinate in advance their power usage
(e.g. formulating a day-ahead plan), but we also assume that
some users may not be able to achieve their planned profiles,
because of changes in usage pattern, failures or emergencies.
In this case the original plan can not be followed, and thus with
help of the remaining users, the community must coordinate
to try to remain as close as possible to its original plan.



II. PRELIMINARIES

In [6], a distributed architecture for coordinating the power
usage of a community of agents was introduced. Two main
ideas were proposed: i) the use of power profile based dis-
tributed coordination, and ii) the modeling of Quality of Life
(QoL) of a household using a generative probabilistic model
of the power consumption of each agent. The coordination
was formulated as an optimization problem that takes into
account the local cost of each agent to achieve a given power,
and a global cost that measures the power balance of the
community. This is illustrated in Fig. 1, where a group of
agents i ∈ N = {1, . . . , N}, together with a coordinator,
iteratively negotiate their future aggregated power usage. In
the following we give a brief overview of the framework and
methods, and direct the reader to [6] for further details.

Distributed Coordination: The coordination done by the
community is formulated as a sharing problem:

minimize
(xi)i∈N

[∑

i∈N
fi(xi) + gr(

∑

i∈N
xi)

]
. (P1)

The agents i = 1, . . . , N in the community coordinate their
power usage, each with a power profile xi ∈ RT , and where
T is the of number time slots (e.g. 10 min time slots and T =
144 represent a 24 hour period). The function fi : RT → R
measures the local cost (or difficulty) of agent i to achieve the
profile xi, while the function gr : RT → R measures the cost
for the community to have an aggregated profile

∑
i xi.

For scalability and privacy issues, it is desirable that the
function fi is only available to agent i, while gr is only
available to the coordinator, thus a distributed coordination
is used. By introducing duplicate variables zi = xi ∀i ∈ N ,
and under some assumptions for the functions fi and gr (e.g.
convexity), the Problem (P1) can be solved iteratively using
ADMM [9], where at iteration k the following is calculated:

xk+1
i := arg min

xi

[
fi(xi) +

ρ

2
||xi − xki + bk||22

]
,∀i ∈ N

z̄k+1 := arg min
z̄

[
gr(Nz̄) +

Nρ

2
||z̄ − x̄k+1 − νk||22

]

νk+1 := νk + x̄k+1 − z̄k+1,

(1)

where for a set {ai}i∈N , we note ā to represent its average
(i.e. ā = 1

N

∑
i∈N ai). The vector νk ∈ RT corresponds to the

scaled Lagrange multipliers [9], ρ is a parameter, and bk =
x̄k − z̄k + νk is a broadcast signal. The first step (xk+1

i -step)
is evaluated concurrently by all agents (agent i only needs to
know bk), while the second and third steps are evaluated by the
coordinator, which only needs to aggregate (xk+1

i )i, calculate
x̄k+1, z̄k+1 and νk+1, and then broadcast bk to all agents.

Local Cost: Each agent i has a local cost of the form:

fi(xi) = min
ui

[
fui (ui) + f

x|u
i (xi, ui)

]
, (2)

which is derived from a generative probabilistic model
P (xi, ui) = P (ui)P (xi|ui). The probability P (ui) measures
how natural control ui ∈ Ui is, while P (xi|ui) is a measure
of the certainty of achieving the profile xi given the control
signal ui. Thus, the local cost is defined as:

fi(xi) = min
ui∈Ui

[− logP (xi, ui)] , (3)

Agent Agent Agent. . . . . .

xk
1 bk xk

N bk

Coordinator

f1(x1)

∑
i fi(xi) + gr(

∑
i xi)

fi(xi) fN(xN)

Fig. 1. Two-level distributed coordination architecture proposed in [6].

with f
x|u
i (xi, ui) = − logP (xi|ui), and fui (ui) =

− logP (ui). In case P (xi, ui) becomes zero, f
i
(x

i
) becomes

+∞, indicating that the associated profile xi is not achievable.
An example of this is when P (xi|ui) is given by the delta
function δ(xi − χi(ui)), with χi : Ui → RT some mapping
from control signals ui to profiles xi.

Given that two key aspects for the balancing of power
profiles are to schedule and to control the load, the probability
of the control ui, P (ui), is modeled using a hidden semi-
Markov model (HSMM) [10] that explicitly models time-
varying signals as a sequence of time intervals (or modes).
Thus, the profile xi is described by a sequence of discrete states
si,t ∈ Qi = {qi,m}m=1,...,Mi

, where each state represents the
state (or mode) of appliance i at time t. We assume that the
control variables ui are these modes at time t = 1, . . . , T . In
[6] it is described how to efficiently solve Eq. (1.1) for fi as
defined in Eq. (3) using HSMM segment models.

Global Cost: The global cost function, gr(v), measures
the cost associated to the aggregated power usage v ∈ RT
with respect to a reference profile r ∈ RT . The profile r
can represent the expected generated power profile or the
planned consumption profile, and when r = 0 the goal
becomes to flatten the power consumption (when all agents
are consumers). Two examples of such functions are:

• the peak-to-average ratio (PAR): g(v) = αT ||v||∞∑
t vt

, and
• the Euclidean squared norm of the deviation from a

reference profile: gr(v) = α||v − r||2.

III. HIERARCHICAL DISTRIBUTED COORDINATION

We use a hierarchical distributed coordination to allow a
partial de-coupling of non-overlapping subtrees of the hierar-
chical structure. For simplicity we will present the hierarchical
formulation for a two-level coordination (three-level architec-
ture), but extending it to deeper hierarchies is straight forward.

Formulation: Let us assume there are J groups of agents,
and let J = {1, . . . , J} be the index set representing these
groups. (Notation: In the following we use the index j to
refer to groups and the index i to agents). Let {Nj}j∈J be a
partition of N (i.e. N = ∪Jj=1Nj and Nj∩Nk = ∅ for j 6= k),
with Nj = |Nj | the cardinality of group j and N =

∑J
j=1Nj

the total number of agents. Considering the partition {Nj}j∈J ,



now we rewrite problem (P1) as:

minimize
(xi)i∈N

∑

j∈J

∑

i∈Nj

fi(xi) + gr(
∑

j∈J

∑

i∈Nj

xi)

+
∑

j∈J
ĝj(
∑

i∈Nj

xi),
(P2)

where, in addition to the cost of each agent (repre-
sented by functions fi(xi)), and the global shared cost
gr(
∑
j∈J

∑
i∈Nj

xi), we have introduced an extra cost term
ĝj(
∑
i∈Nj

xi) for each group j ∈ J . Each of these extra terms
can encode a shared cost for the group, a set of constraints for
the group (e.g. ĝj(x) = 0 for x ∈ Xj , and +∞ otherwise), or
could be zero for all x, which corresponds to problem (P1).

Let us now introduce the variables wj which corresponds
to the duplicate of the aggregated profile of group j,

∑
i∈Nj

xi,
which together with the corresponding required constraint
leads to the equivalent optimization problem:

minimize
(xi)i∈N

∑

j∈J


∑

i∈Nj

fi(xi) + ĝj(
∑

i∈Nj

xi)


+ gr(

∑

j∈J
wj)

s.t. wj −
∑

i∈Nj

xi = 0, ∀j ∈ J .
(P3)

It is not difficult to observe that this corresponds to a sharing
problem where gr(

∑
j∈J wj) is the cost shared among J

groups, and that the coordination can be performed among
groups of agents. (Notation: the subscript g will be use to
refer to variables that are calculated at the global coordinator
(with the exception of wqj ), while a hat (ˆ) or a tilde (˜) for
some of the variables calculated at each group coordinator).
When applying the ADMM method, we obtain the following
iterative procedure:

(x̃q+1
i )i∈Nj

:= arg min
(xi)i∈Nj


∑

i∈Nj

fi(xi) + gqj (
∑

i∈Nj

xi)


 ,∀j ∈ J

w̄q+1
g := arg min

w̄g

[
gr(Jw̄g) +

Jρg
2
||w̄g − x̄q+1 − νqg ||22

]

νq+1
g := νqg + x̄q+1 − w̄q+1

g ,
(4)

with q the iteration index at the upper level. Here w̄qg =
1
J

∑
j∈J w

q
j , and x̃qi is the profile of agent i at iteration q

(after optimization problem in group j has finished). The
remaining variables are defined as x̄q = 1

J

∑
j∈J x̂

q
j , with

x̂qj =
∑
i∈Nj

x̃qj , and ρg the global penalty of the quadratic
term. It is important to note that the problem solved in the
(x̃q+1
i )-step of this iterative procedure also corresponds to a

sharing problem, with shared cost:

gqj (
∑

i∈Nj

xi) = ĝj(
∑

i∈Nj

xi) +
ρg
2
||
∑

i∈Nj

xi − x̂qj + bqg||22, (5)

where bqg = x̄q − w̄qg + νqg . That is, the shared cost of group
j consists of the original cost of the group plus a quadratic
penalty related to the deviation from the reference of the upper
level cost. Thus, we have decomposed the original sharing
problem into a sharing problem solved among groups plus a
set of smaller sharing problems solved by the groups.

Agent Agent. . .

Group Coordinator j

x̂q
j bqg

Global Coordinator

b
kj
jx

kj
i

fi(xi)

∑
j

∑
i∈Nj

fi(xi) +
∑
j ĝj(

∑
i∈Nj

xi) + gr(
∑
j

∑
i∈Nj

xi)

. . .

Low

High

Communication
Frequency (rate)

bqgx̂q
J

Agent Agent. . .

Group Coordinator j

bkJJxkJ
i2

fi2(xi2)

Fig. 2. Hierarchical distributed architecture.

The groups collaborate to solve a sharing problem in
a distributed way, while the agents in a group collaborate
to solve a sharing problem for the group. This naturally
translates in a nested architecture as presented in Fig. 2. In
the figure, different colors indicate different sharing problems
being solved and their relations: blue (outer boxes) indicate
the sharing problem solved by the groups, while red and green
(inner boxes) correspond to smaller sharing problems solved
within groups. Two advantages of this nested architecture are
that: i) the problems solved within two different groups are de-
coupled, which implies that agents from different groups do
not need to work synchronously, and ii) the upper levels can
work at a lower frequency than the lower levels, thus reducing
the load on the global coordinator (as indicated in Fig. 2).

Coordination within each group: The optimization prob-
lem within each group in Eq. (4.1) considers a group cost
that includes the quadratic term coming from the upper-level.
For group j, the algorithm obtained using ADMM (with
bkj = x̄kj − z̄kj + νkj ) is:

xk+1
i := arg min

xi

[
fi(xi) +

ρj
2
||xi − xki + bj

k||22
]
,∀i ∈ Nj

z̄k+1
j := arg min

z̄j

[
gqj (Nj z̄j) +

Njρj
2
||z̄j − x̄k+1

j − νkj ||22
]

νk+1
j := νkj + x̄k+1

j − z̄k+1
j ,

(6)

where the minimization solved at the z-step in Eq. (6) is the
sum of three terms (see also Eq. (5)), including two quadratic
terms: the deviation from the group’s goal, and the deviation
from the global goal. Note that index q is used for the iteration
of ADMM at the upper, group level. We write the same k for
the iteration index within the groups, but when reading k it
should be understood as kj , the current iteration within group
j (the iterations within a group are not synchronized with the
iterations within other groups).

Since in the present work we are more interested in the
hierarchical architecture than in the structure of the cost
functions, in the following we consider that there is no cost for
the group, i.e. ĝj(·) = 0. In this case Eq. (6.2) can be solved
analytically:

z̄k+1
j =

1

1 + αρj

[
αρj

(
x̄k+1
j + νkj

)
− rqj

]
, (7)



with αρ,j =
ρj
ρgNj

, and rqj = 1
Nj

(bqg − x̂qj). In other words, z̄kj
and νkj are linear in all the values required to be evaluated
(including the residuals using in the algorithm’s stopping
conditions [9]). Thus, when there is no cost for the group,
the group coordination is simpler than the global one, because
the state of the negotiation can be easily calculated by any
entity that has access to the sequence (x̂kj )k=0,...,Kj

and to rqj ,
with Kj the number of iterations. Note that rqj has the role of
being the global reference profile for group j at iteration q.

On-line coordination in the hierarchical architecture: So
far we have described how the coordination can be solved
in a nested fashion using the hierarchical architecture, where
groups of agents negotiate their power usage, and within each
group a coordination is done among the agents in the group.
Now we modify the scenario and assume that all groups (and
all agents in the groups) have already negotiated their power
usage profiles, and that they need to adjust when one or more
agents deviate from their planned power profiles. We assume
that each group has a planned power reference profile rj =∑
i∈Nj

ri that was determined in advance, e.g. a day-ahead
schedule (e.g. rj = x̂∗j , with x̂∗j the solution of the last iteration
of ADMM solved using Eq. (4)). We will call r =

∑
j∈J rj ,

the reference profile for the community, and we assume the
reference profiles are fixed over time during the period [1, T ].

We want each group to be partially decoupled from the
global coordination, such that when an agent i ∈ Nj changes
its plan, the group j can adjust for a time frame of duration
∆, before the group performs a global adjustment with other
groups. In cases when the deviation is small, the group is
expected to be flexible enough to completely absorb this
deviation, such that no change is observed by other groups,
the global coordinator or the utility, while when the deviation
is large, the group will absorb part of the deviation, and
later all groups will help to respond to the change. Thus,
a subtree of the hierarchical architecture should be able to
handle some unplanned changes. There are two main goals
for implementing such behavior:

• To reduce the communication and processing load of
the global coordinator. This would also allow higher
communication rates within the group – when compared
with the groups coordination in the upper level. As an
extreme example, consider the case when there is a global
coordinator and no groups (as in [6]): this would put a
rather high load in the coordinator when the number of
agents is large, and the dependency of the whole system
on the global coordinator would be too high.

• To give robustness to the system. In case of communica-
tion problems among one group and the global coordina-
tor (e.g. during emergencies, failures, etc.), that group (a
subtree of the hierarchical architecture) would still be able
to coordinate and respond to deviations within the group.
Thus, the coordination within a group allows its agents
to help stay close to their planned reference profile, and
therefore the system would also stay close to its global
reference, even if there are communication issues between
a group and the global coordinator.

The described on-line coordination assumes that: i) a group
is flexible enough to adjust to not-too-large deviations within
the group, and ii) the agents in a group can communicate

within the group at a fast enough rate (with low delay). This
last point may require some geographical closeness for the
agents within a group, which is also required to better respond
in case of failures in the communication network. Also, and
even though not strictly achievable unless cost functions are
assigned to each group, if some agents in a group receive
power through the same branch of the distribution network
tree (e.g. they both depend on a subset of substations), the
coordination among the agents in the group would reduce the
chance to overload those nodes (substations) in the distribution
network (with a goal similar to [11]).

In the following section we present a general method for
grouping the agents, and give an explicit implementation that
takes into account the flexibility of the groups. Nevertheless the
framework could also include other goals, such as geographical
closeness and path sharing in the distribution network.

IV. BUILDING OF THE HIERARCHICAL ARCHITECTURE

Flexibility of a group: We understand flexibility2 as the
capacity to absorb fluctuations, and the ability to cope with
changes and to accommodate uncertainty. In general, this
capacity is related to the diversity of a system, and in its ability
to respond to change.

In our case, we want each group to be able to adjust when
one or more agents in the group deviate from the planned
profile. This can be seen as the ability of each group to have
various power profiles, or in other words, to be able to generate
an aggregated power profile with a large variability of shapes.
To measure this capacity, we consider the distribution of the
aggregated profile that can be produced by a group, and we
seek to have groups with a distribution as “spread” as possible.
We therefore need a measure of the spread of such distribution,
and for this we propose to use the entropy of the group’s
aggregated profile as a measure of the flexibility of the group.

Formally, let us call Xi ∈ RT the multivariate random vari-
able associated with the profile of agent i, and Yj =

∑
i∈Nj

Xi

the random variable associated to the aggregated profile of the
agents in group j. We want the entropy of the aggregated
profile, H(Yj), to be large for every group j = 1, . . . J , so
that all groups are flexible enough.

Partitioning procedure (welfare maximization problem):
For building the hierarchical architecture we consider a top-
down procedure. We assume that we have a set of agents, N ,
to be partitioned into J groups. Thus, recursively applying this
procedure to the obtained groups we can build the hierarchical
structure. For simplicity we present the procedure for building
a three-level architecture, but building deeper trees is straight
forward. This framework can accommodate not only the flexi-
bility measure proposed above, but also other measures. In the
following we present the procedure for the general case.

We want to partition the agents in N = {1, . . . , N} into
J groups. This is formulated as the following problem:

arg max
(N1,...,NJ )∈P(N )




J∑

j=1

Wj(Nj)


 , (P4)

2The flexibility in production systems has been widely studied in the field
of manufacturing [12][13], where the ability to adjust to changes in relevant
factors (product, process, loads and failure) is of productive importance.



which is known as the welfare maximization problem, where
we seek to maximize the sum of the welfare of the different
groups over all possible assignments (N1, . . . ,NJ), i.e. over
all possible elements of the partition set of N , P(N ). The set
function Wj : 2N → R+ evaluated in a set S ⊆ N gives the
welfare for group j when being assigned the agents in S.

Solving the assignment problem in (P4) is NP-hard [7],
and thus an approximate algorithm must be used when the
number of agents is large, which is our case. However, efficient
approximate algorithms for the welfare problem exist when
the functions Wj are submodular3 and monotone, and in such
case the problem (P4) corresponds to a problem known as the
submodular welfare maximization [7], for which approxima-
tion algorithms exist in the off-line [8] and on-line setting [7].
The existing approximated algorithms are γ-approximations,
which means that in expectation the solution they give is at
least γOPT, with OPT the welfare for the optimal assignment.
In the current work we consider the off-line setting, for which
there is an optimal approximation that has the best achievable
bound in the off-line setting [8] and has γ = (1−1/e) ≈ 0.632
(in the on-line setting γ = 0.5 [7]).

In the off-line setting, the optimal approximation is ob-
tained (in expectation) by allocating each agent in groups at
random following a distribution estimated using the welfare
functions Wj(S) ∀j [8]. In the case the set function is the
same for all groups, W (S) = Wj(S) ∀j (as in the case of the
entropy), the optimal approximation is obtained by allocating
the agents uniformly at random. To obtain a good solution, this
random assignment of agents to groups is repeatedly applied,
and the best observed assignment is kept. Following [8] we
call this allocation procedure uniform assignment algorithm.

The entropy of a sum of multivariate random variables,
defined in the previous subsection to measure the flexibility
of a group of agents, evaluates the entropy of sums, which
is known to be submodular and monotone [14], and thus can
be used as welfare measure within the presented framework.
(Note that this is not the same as the entropy of a joint
probability distribution, which is more common and also
known to be submodular [15]). In our current setting, the
welfare function is designed to measure the flexibility of a
group, but other measures are also possible. In addition, it
is important to mention that any nonnegative linear combina-
tion of submodular (monotone) functions gives a nonnegative
submodular (monotone) function [7], and thus a more general
welfare measure can be obtained by a nonnegative linear
combination of such functions.

Log determinant of the covariance matrix: Now we ana-
lyze the entropy as flexibility measure for a particular case.
Let us assume that all Xi, with i = 1, . . . , N , are multivariate
normal (MVN) random variables. Then, the aggregated profile
Yj is also a MVN, and its entropy is proportional to the log
determinant of its covariance matrix of Yj : H(Yj) ∝ log |KYj

|,
up to an irrelevant constant additive factor that depends on the
dimension T . Thus, in this case we can define the function set
w : 2N → R+ measuring the flexibility of a group Nj as:

W (Nj) = log
∣∣KYj

∣∣ , (8)

3A set function f : 2N → R is monotone if f(S) ≤ f(P ) whenever
S ⊆ P . We say that f is submodular, if for all S1, S2 and s such that
S1 ⊆ S2 and all s 6∈ S2 we have that f(S1∪s)−f(S1) ≥ f(S2∪s)−f(S2).

with Yj =
∑
i∈Nj

Xi, and Xi ∈ RT the profile of agent i.

Under the assumption that the agents are independent MVN
random variables, the covariance matrix of the aggregated
profile of a group Nj can be expressed as the sum of the co-
variance matrix of the agents in that group: KYj

=
∑
i∈Nj

Ki,
with Ki the covariance matrix of agent i. Thus, the flexibility
of a group becomes: W (Nj) = log

∣∣∣
∑
i∈Nj

Ki
∣∣∣ .

There are several ways to estimate of the covariance matri-
ces {Ki}i. For example, every agent i could estimate its matrix
Ki and send it to the coordinator. Another option, which is used
in the simulations in the following section, corresponds to use
the history of profiles obtained during the day-ahead negotia-
tion {xki }k=1,...,K (in Eq. (1.1)) as samples to estimate of the
covariance matrix as: Ki = 1

K−1

∑K
k=1(xki − m̄i)(x

k
i − m̄i)

T ,
with m̄i = 1

K

∑K
k=1 x

k
i . To estimate the determinant of a

covariance matrix, the product of its non-zero singular values
(SVD) is used in order to avoid numeric issues (i.e. the pseudo-
determinant is used instead of the determinant).

V. ELECTRIC VEHICLE CHARGING SCENARIO

We exemplify the proposed framework in a simulated
scenario similar to [6], but using a simpler generative model for
the local cost. Our goal is to analyze the effect of two factors
related to the hierarchical distributed coordination: i) what kind
of grouping is obtained using the proposed flexibility measure,
and ii) how well does the obtained hierarchical distributed
structure can adjust to unplanned changes. In particular we
analyze a difficult case: we assume there are communication
problems between each group and the global coordinator, and
thus only coordination within each group is possible.

Initial setup and EV modeling: The scenario consists of
a community of N=256 households, each having an EV that
must be charged (3kWh) continuously for 3 hrs during the
day. A day is divided into T = 144, 10-minute slots, thus
the charging takes 18 time-slots. Each EV is represented by
three modes (M = 3): Q = {q1, q2, q3}, indicating the period
before, during, and after charging. In this scenario, if the
charging time is not coordinated, all EVs will be charged at a
similar time (e.g. in the evening after the EV is plugged) and
generate a large peak. Thus it would be better that the EVs
coordinate their charging time4.

We fix the duration of the charging time d2 = 18 (second
mode), and assume that: a) agent i has a preferred charging
starting time µi defining the distribution of the duration of
mode q1, b) the control variable is the starting time ui, and
c) the starting probability is given by a Gaussian centered in µi
and with variance σ2

i . Given that we assume that the duration
of the charging is fixed, and by also assuming that the duration
of the last mode (q3) follows a uniform distribution, we have
that fui (ui) equals (ui−µi)

2

2σ2
i

+ci, with σ2
i defining how flexible

household i is, and ci a non-relevant constant. For the different
EVs we set a preferred starting time µi uniformly distributed
in [50, 70], and let σi take values in {3, 9} (evenly distributed),

4We consider an EV charging scenario for simplicity and for reducing the
number of parameters (we focus here on the hierarchical structure, not on the
modeling of appliances). However, any controllable appliance can be included,
e.g. lighting (level adjustment), A/C and laundry machines (usage timing), etc.



i.e. about half the users are flexible in their start charging time,
and the other half is less flexible.

We assume that each EV requires 1000[W ] when being
charged, which happens during mode q2. This is modeled
by considering an output distribution given by P (xi,t|st) =
1[xi,t=X (st)], with 1[◦] the indicator function, xi,t the profile
xi at time t, and X (st) = 0, 1000, 0[W ] for st = q1, q2, q3

respectively. Thus f
x|u
i (xi, ui) = −∑T

t=1 log 1[xi,t=X (st)],
and xi is uniquely determined by ui.

Day-ahead coordination: We assume that the households
together with a global coordinator perform a day-ahead co-
ordination as in Fig. 1. In this day-ahead coordination, the
community tries to flatten its aggregated power profile using
a global cost g0(

∑
i xi) = α||∑i xi||2 using the negotiation

presented in Eq. (1). The aggregated profile obtained from
this negotiation is the reference r =

∑
i ri for the day. In Fig.

3 (blue) the day-ahead coordination result is shown, together
with the power usage profile that would be required if the is
no coordination (red) between the households.

Grouping: After the day-ahead negotiation takes place, the
global coordinator uses the observed history of the negotiation
{xki }Kk=1 ∀i to estimate the covariance matrices of all agents
Ki, and then partitions the agents into J = 4 groups seeking
to maximize the flexibility of the groups by applying the
uniform assignment algorithm using 104 sampled allocations.
In Fig. 5 the obtained covariance matrices of two EVs and
the community are shown, while in Fig. 6 the covariance
matrices of the four obtained groups are shown. Note that
there are negative entries in the covariance matrices (off
diagonal), due to the negative correlation between start and
end charging times. The obtained aggregated reference profile
for each groups, according to the day-ahead aggregated profile,
is presented in Fig. 4.

On-line coordination: Now we assume that at time t = 10,
the agents in set N̂ ⊆ N change their preferred starting
time, and the same agents also reduce their flexibility. We
consider different ratios for the number of such agents, defined
by p = |N̂ |/|N | with p ∈ {0, 0.2, 0.4, 0.6, 0.8}. Given that
some agents change their cost function (i.e. their power usage
profile), a new coordination takes place considering the new
cost function of the EVs i ∈ N̂ , with the updated parameters
(σi, µi) set as: σi ← 1 and µi ← µi + δi, where δi is
uniformly distributed in [−10, 10], i.e. the vehicles change their
preferred starting time, and reduce considerably their flexibility
(σi changes from 3 or 9 to 1).

In the day-ahead coordination, the goal of the community
was to flatten the power usage, however now the goal of the
community becomes to minimize its deviation from the day-
ahead reference aggregated power usage r =

∑
i ri by using

the global cost gr(
∑
i∈N xi) = ||∑i∈N xi − r||2. We also

assume that in some cases a group can not communicate with
the global coordinator. In those cases the group coordinator
will add a group cost function (as in Eq. 5), ĝj(

∑
i∈Nj

xi) =

||∑i∈Nj
xi −

∑
i∈Nj

ri||2, seeking to minimize the deviation
from the group’s day-ahead reference profile.

Figure 7 present results of the coordination when no group
can communicate with the global coordinator (i.e. simulating
communication problems), when a ratio p of the agents change
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Fig. 3. Day-ahead coordinated profile of the community (blue) and non-
coordinated profile of the community (red). Thanks to the coordination, the
community flattens its profile and cuts the maximum to a third.
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Fig. 5. Covariance matrices used to calculate the entropy. Left to right: EV
with σ = 3, EV with σ = 9, and all EVs (community). Note the negative
correlations between start and end charging times.

their profiles. Fig. 8 summarizes the results for different
values of p and when different numbers of groups are able
to communicate with the global coordinator.

Comments: The grouping results (Fig. 6), together with
the day-ahead reference profiles for those groups (Fig. 4),
show that the obtained groups have some flexibility for most
time slots, that in some cases there is concentration around
some time slots (e.g group 4), and that in other cases – e.g
group 3 – the covariance matrix is smoother, has less extreme
negative/positive values and the group’s aggregated profile is
more flat. The coordination results (Fig. 7 and Fig. 8) show
that even when 20% or 40% of the agents change their planned
pattern usage, the groups are able to adjust and obtain a profile
similar to their reference, even if there is no coordination
among groups (simulating communication issues). More over,
even when 80% (p=0.8) of the agents change their profile and
become inflexible, and there is only coordination within the
groups (Fig. 8, red curve) the total aggregate profile is far
from the no-coordination case.

VI. DISCUSSION AND CONCLUSIONS

We presented a distributed hierarchical coordination frame-
work for balancing the power usage of a community. The
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Fig. 6. Covariance matrices used to calculate the entropy of the groups. From
top-to-bottom, left-to-right: groups 1, 2, 3 and 4. Same color map is used for
all groups. Note the negative correlations between start and end charging times.
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Fig. 7. Community aggregated profiles when the groups can not communicate
with the global coordinator. The value of p indicates the ratio of agents that
change their cost function and become inflexible. E.g. a value of p equal to
0.2 means that 20% of the agents change their cost function.
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Fig. 8. Deviation from reference when a set of groups can not communicate
with the global coordinator and p*100% of the agents do not follow the plan.
The no coordination case (blue dotted line) is shown for comparison.

community can plan a day-ahead usage pattern, and during the
day, coordinate to stay close to the planned pattern, allowing
to reduce the generation cost, add predictability to their power
usage, and help giving stability to the grid. The hierarchical
architecture is built by allocating the agents in groups, seeking
that each group is flexible enough to adjust to unplanned
changes, even when there is no coordination with upper levels
of the hierarchy. We propose the use of a submodular welfare
maximization framework for grouping the agents, and define

the flexibility of a group in terms of the entropy of the
group’s aggregated profile. During the grouping, other welfare
measures can be included in addition to the flexibility. Now we
briefly comment two options: i) For reducing cost in the de-
ployment of the communication network, it would be desirable
that the agents in a group had a low geographical dispersion,
to allow faster communication and higher robustness in case of
failures. This would require defining a submodular dispersion
measure, or including a non-submoludar dispersion function as
in [16]. ii) Two agents may overload a substation if they do not
coordinate (e.g. as in [11]). Thus it would be better if they are
in the same group (subtree of the coordination architecture).
Therefore, information of the distribution network topology
should be added to the welfare measure of a group.
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