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Abstract— This paper unifies the previously defined instan-
taneous measures of responsiveness in multi-agent systems,
namely those of stiffness and manipulability. These concepts
are used for characterizing how a networked multi-agent system
responds to perturbation of agents or to exogenous movements
of its leader nodes. The resulting unified notion of a system’s
responsiveness provides us with a precise characterization of
the effect that different choices of leader nodes and interaction
topologies have on how easy or hard it is to control the network.

I. INTRODUCTION

During the last decade, our understanding of how to design
decentralized controllers for networked, multi-agent systems
has increased significantly. Controllers have for example
been designed for maintaining formation in coordinated
mobile systems, for achieving coverage in sensor networks,
and for establishing communication links in mobile ad-hoc
networks. However, what is still not well-understood is how
such networked systems should be structured in order to
make them amenable to human control.

One can imagine a number of ways in which human inputs
can be incorporated into the design; from control of virtual
nodes [1], [2] and manipulation of the team’s boundaries [3],
[4], to the introduction of incompressible flows in the system
[5]. In this paper, we follow the idea that control inputs can
be injected into the network through dedicated leader-nodes,
while these inputs are propagated to the remaining nodes
through the dynamic interaction protocol, e.g., [6], [7]. In
particular, we are interested in what effect the movements of
the leader nodes have on the remaining nodes.

One manner in which this impact can be measured is in
terms of the system’s controllability properties [6]. However,
controllability is a point-to-point property in that it estab-
lishes whether or not the agents, viewed as an ensemble, can
be transferred from one configuration to another. Rather than
investigating such point-to-point properties, in this paper we
study instead the instantaneous effect that the leader nodes’
movements have on the remainder of the network.

Such instantaneous measures have been previously pro-
posed in the literature. For example, the classic notion of
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rigidity can be thought of as measuring whether or not links
of fixed lengths between agents in the network can ensure
that the system behaves like a rigid body [8]. This notion
was generalized in [9] to systems where the underlying graph
structures are rigid, yet the edge lengths are asymptotically
maintained through actual control laws, resulting in stiffness
and the related rigidity indices. Similarly, in [10], the notion
of manipulability indices was introduced in the multi-robot
context in a manner similar to its traditional use for robotic
manipulators as a measure of how hard/easy it is to move a
manipulator arm in a given direction. In this paper we unify
these previous notions of instantaneous network responses
through the introduction of responsiveness as a measure of
how well the system responds to the movements of the
leaders.

II. PRELIMINARIES AND BACKGROUND

A. Multi-Agent Formations and the Rigidity Matrix

Let x(t) = [x1(t)>, ..., xN (t)>]> ∈ RNd be a configu-
ration of N agents, where agent i ∈ {1, ..., N} has state
xi(t) ∈ Rd at time t. Consider that M pairs of agents have
communication links and constitute an information-exchange
network. Using a graph-based representation, G = (V,E)
denotes the underlying graph of the network. Here V =
{v1, ..., vN} is the node set, where the node vi corresponds to
agent i; and, E = {{vi1 , vj1}, ..., {viM , vjM }} is the edge set,
where each edge represents a communication link between
two agents. Then we refer to (x, G) as the “formation” of
the network [11], which is also called the “framework” in
the mathematics literature (e.g., [8]).

Consider the situation where the connected agents do not
change their relative distances and the trajectories of xi(t)
are smooth and differentiable in t. This gives us the following
constraints on agents’ motion:

d

dt

1
2
||xi−xj ||2 = (xi−xj)>(ẋi− ẋj) = 0 ∀{vi, vj} ∈ E,

which can be summarized as

Rẋ = 0,

where R(x, G) ∈ RM×Nd is called the rigidity matrix of
the formation (x, G) [8], [11]. R consists of M ×N blocks
of 1 × d row vectors, and its (k, ik) and (k, jk) blocks are
(xik

− xjk
)> and −(xik

− xjk
)> (or −(xik

− xjk
)> and

(xik
−xjk

)>), respectively, and other blocks are zeros, where
the agents ik and jk are connected by edge k ∈ {1, ...,M}.

The edges constrain the motion of the agents. However,
the translational and rotational freedom, d +

(
d
2

)
= d(d+1)

2 ,



always remain [8]: rank(R) ≤ Nd− d(d+1)
2 . Suppose that all

the N agents are not contained in any hyperplane within Rd

(i.e., “generic” case [8]). The formation is said to be “rigid”
if and only if the equality holds.

We here, without loss of generality, assign the last N`

indices to leaders and remaining Nf (= N − N`) indices
to followers. Hence, the vector x(t) is divided into two
parts: x(t) = [xf (t)>, x`(t)>]>, where xf ∈ RNf d and
x` ∈ RN`d are the states of the followers and the leaders,
respectively. Using the submatrices Rf (x) ∈ RM×Nf d and
R`(x) ∈ RM×N`d of the rigidity matrix such that R(x) =
[Rf (x)|R`(x)], we have

Rf (x)ẋf (t) + R`(x)ẋ`(t) = 0. (1)

By definition, R(x) has a null space containing the trans-
lational freedom of the agents’ (infinitesimal) motion, i.e.,
R(x)(1N ⊗ Id) = 0, where 1k is the k-dimensional column
vector whose entries are all 1, and Ik is the k × k identity
matrix. Hence Rf (x)(1Nf

⊗ Id) = −R`(x)(1N`
⊗ Id), and

in the case of N` = 1, we have

Rf (x)(1Nf
⊗ Id) = −R`(x). (2)

B. Edge-Tension Energy

To formulate the dynamics of the agents later, we intro-
duce an edge-tension energy

E(x) =
1
2

N∑

i=1

N∑

j=1

Eij(xi(t), xj(t)),

where

Eij(xi, xj) =

{
1
2{eij(||xi − xj ||)}2 {vi, vj} ∈ E

0 otherwise.

Here, eij : R+ → R is a strictly increasing, twice differ-
entiable function such that eij(dij) = 0 and e′ij(dij) 6= 0,
where dij > 0 is the desired distance between agents i and
j, and e′ij(r) , deij(r)

dr . A typical example of eij is

eij(||xi − xj ||) = cij{||xi − xj || − dij}, (3)

where cij > 0 is a weight assigned to the communication
link between agents i and j.

Let D(G) ∈ {−1, 0, 1}N×M be an incidence matrix [2]
of graph G. The first and the second derivatives of the edge-
tension energy are given as follows (see [10] for the details
of the derivation):

∂E(x)
∂x

>
= (Lw(x)⊗ Id)x = ((DW1(x)D>)⊗ Id)x,

∂2E(x)
∂x2

= Lw(x)⊗ Id + R(x)>W2(x)R(x),

where Lw(x) , DW1(x)D>; W1(x) and W2(x) are M×M
diagonal matrices whose diagonal elements are

[W1(x)]kk = wikjk
(||xik

− xjk
||),

[W2(x)]kk =
w′ikjk

(||xik
− xjk

||)
||xik

− xjk
|| ,

k = 1, ..., M, {vik
, vjk

} : edge k,

where, letting e′′ij(r) , d2eij(r)
dr2 ,

wij(r) ,
eij(r)e′ij(r)

r
,

w′ij(r) , dwij

dr
=
{e′ij(r)2 + eij(r)e′′ij(r)}r − eij(r)e′ij(r)

r2
.

Note here that the edges are assumed to be indexed consis-
tently for W1(x) and the incidence matrix D, and for W2(x)
and the rigidity matrix R(x), respectively.

Remark 1 If all the desired distances are satisfied at x =
x∗, then ∂E

∂x

∣∣
x=x∗ = 0 and

H , ∂2E(x)
∂x2

∣∣∣∣
x=x∗

= R(x∗)>W2(x∗)R(x∗).

By the definition of the function eij and the fact that ||xi −
xj || = dij > 0 at x = x∗, W2(x∗) is always positive definite.

Example 1 If the edge-tension energy is given by (3), then
e′ij(r) = cij , e′′ij(r) = 0, [W1(x)]kk = c2

ikjk
(1−dikjk

/||xik
−

xjk
||), and [W2(x)]kk = c2

ikjk
dikjk

/||xik
− xjk

||3. Hence,
when the desired distances are satisfied at x = x∗, the k-th
diagonal elements of the weight matrices become

[W1(x∗)]kk = 0, [W2(x∗)]kk =
(

cikjk

dikjk

)2

.

III. RESPONSIVENESS AND MANIPULABILITY

A. Dynamics of Followers

Suppose the desired distances are satisfied at the original
configuration x∗. Then, assume that the leaders’ positions
are moved instantaneously with a small enough increment
δx`. In response to this input from the leaders, suppose
the response of the followers is obtained according to the
following formation control strategy:

ẋf = −∂E(x)
∂xf

>
= −((DfW1(x)D>)⊗ Id)x,

where Df = [INf
|0]D (0: zero matrix). Under this strategy,

the followers try to recover their original desired distances.
Using the Taylor expansion of ∂E(xf+δxf ,x`+δx`)

∂xf
around

x = x∗ and noting Remark 1, the first-order approximation
of the followers’ response is described by

˙δxf (t) = −Hff δxf (t)−Hf `δx`, (4)

where Hff , ∂2E(x)
∂x2

f

∣∣
x=x∗ and Hf ` , ∂2E(x)

∂xf ∂x`

∣∣
x=x∗ , which

are the submatrices of the Hessian H in Remark 1:

H =
[

Hff Hf `

H`f H``

]
.

Since we focus on the response around x = x∗, let us use
the simplified notations Rf , Rf (x∗), R` , R`(x∗), and
W2 , W2(x∗). By Remark 1, we have

Hff = R>f W2Rf , Hf ` = R>f W2R`. (5)

In what follows, we focus on the single-leader case (i.e.,
N` = 1) for simplicity unless otherwise stated and see



the convergence of the response of the followers. We note
that the most part of the following discussion still holds in
N` > 1 cases if inputs to the network are given by the
feasible leader motion [10], i.e., constrained motion in which
followers can fully recover the desired distances.

B. Approximate Manipulability
The notion of manipulability is originally introduced in

the field of robot-arm manipulators [12], [13]. Let θ be the
joint angles and r = f(θ) be the state of the end-effector.
Then the index of manipulability is defined by the response
of the end-effector δr to the inputs on joint angles δθ:

δr>Qrδr

δθ>Qθδθ
,

where Qr, Qθ Â 0 are the weight matrices. Although the
manipulability of robot-arm manipulators can be obtained
through the kinematic relation δr = ∂f

∂θ δθ, this cannot
be directly applied to leader-follower networks that involve
dynamics of agents. Therefore, the approximate notion of
manipulability was proposed in [10] by using the conver-
gence point of the followers: δx∗f = limt→∞ δxf (t) = Jδx`,
where J , −R†fR` with R†f the Moore-Penrose pseudo
inverse of Rf , which can be related to the minimum norm
solution of (1) with respect to ẋf . Here, one can see that J is
analogous to the Jacobian matrix in robot-arm manipulators.
Specifically, the approximate manipulability is defined as

m(x, G, δx`) =
||δx∗f ||2
||δx`||2 =

δx>` J>Jδx`

δx>` δx`
, (6)

where the weight matrices in the original definition in [10]
are assumed to be the identity matrices. In what follows, we
simply refer to this approximate manipulability index as the
“manipulability”.

Since the matrix J is a function x and G, the manipulabil-
ity index enables us to evaluate the instantaneous response
of a network in terms of its agent configurations, network
topologies, and input directions (i.e., leader’s movements);
however, it is not entirely useful to compare rigid formations.
Consider the situation where the configuration of agents
is fixed and the edge set of the underlying graph can be
changed, for example, by adding or deleting communication
links. Then the manipulability index does not change its
value as long as the formation is rigid.

Proposition 1 Given agent configuration x and arbitrary
rigid formations (x, G1) and (x, G2), where G1 and G2 share
the same vertex set V but can have different edge sets,
i.e., G1 = (V,E1) and G2 = (V, E2). The values of the
manipulability index are identical under the same input δx`

regardless of the choice of E1 and E2:

m(x, G1, δx`) = m(x,G2, δx`).

See Appendix A for the proof.
To compare arbitrary formations including rigid forma-

tions in terms of followers’ response to leader’s movements,
we will consider the convergence process of the followers
instead of analyzing only the convergence point.

C. Responsiveness of Multi-Agent Formations

For a given formation satisfying all the desired distance
constraints, to analyze the response of the followers to the
input δx` to the network, namely, the leader’s instantaneous
displacement, we define the following index.

Definition 1 The responsiveness of the followers at time t ≥
0 is the ratio of the norm of the followers’ response to the
norm of the input to the network:

ν(t, x, G, δx`) =
||δxf (t)||2
||δx`||2 . (7)

We here exploit (4) to analyze the network response.

Lemma 1 Suppose N` = 1. Let Hff = V ΛV > be the
eigenvalue decomposition of Hff , where V = [v1, ..., vr] ∈
RNf d×r is a column orthogonal matrix (i.e., V >V = Ir),
and Λ = Diag(λ1, ..., λr) is a diagonal matrix whose di-
agonal elements are non-zero eigenvalues. Let ṽk , (1>Nf

⊗
Id)vk (k = 1, ..., r). The followers’ response is given by

δxf (t) = V Diag(1− e−λkt)V >(1Nf
⊗ Id)δx`

=
r∑

k=1

(1− e−λkt)(ṽ>k δx`)vk.
(8)

Proof: Since δxf (0) = 0, δxf (t) is given by the zero-
state response

δxf (t) = −
(∫ t

0

e−Hff (t−s)dsHf `

)
δx`.

By (2) and (5), we have Hf ` = −Hff (1Nf
⊗Id). Meanwhile,

e−V ΛV >t− In =
∑∞

k=1
tk

k! V (−Λ)kV > = V (e−Λt− Ir)V >.
Using these facts with V >V = Ir, we obtain

δxf (t) =
∫ t

0

e−V ΛV >(t−s)dsV ΛV >(1Nf
⊗ Id)δx`

= V

(∫ t

0

e−Λ(t−s)ds

)
ΛV >(1Nf

⊗ Id)δx`,

and the lemma follows.
Then we obtain the following useful proposition.

Proposition 2 The responsiveness ν(t) is given by the
Rayleigh quotient

ν(t, x, G, δx`) =
δx>` J(t)>J(t)δx`

δx>` δx`

=
r∑

k=1

(1− e−λkt)2(ṽ>k ˆδx`)2,
(9)

where J(t) , V Diag(1−e−λkt)V >(1Nf
⊗Id), and ˆδx` ,

δx`/||δx`|| is the normalized input.

Proof: The proof follows directly by (7) and (8).
Since (9) has a form of the Rayleigh quotient similar to

the manipulability index, the following corollary holds.



Corollary 1 The maximum and minimum values of respon-
siveness over all the directions of δx` are given by

max
δx`

ν(t) = λmax(J(t)>J(t)), min
δx`

ν(t) = λmin(J(t)>J(t)),

where the arguments of the maximum and minimum are given
by the corresponding eigenvectors.

Proof: By the properties of the Rayleigh quotient.

In the remainder of this section, we point out several facts
to show the connection of the responsiveness to the notions
of manipulability and stiffness (rigidity indices).

1) Connection to Manipulability: Since J(t) in (9) con-
verges to J in (6), i.e., limt→∞ J(t) = V V >(1Nf

⊗ Id) =
R†fRf (1Nf

⊗ Id) = −R†fR` = J , we have the following
remark:

Remark 2 The manipulability is characterized by the eigen-
vectors of Hff as

lim
t→∞

ν(t, x, G, δx`) = m(x, G, δx`) =
r∑

k=1

(ṽ>k ˆδx`)2. (10)

Proposition 2 and this remark lead to the following corollary
regarding the range of ν(t).

Corollary 2 The responsiveness satisfies 0 ≤ ν(t) < Nf .

Proof: ν(0) = 0 follows by δf (0) = 0. We know
that, by (9), ν(t) increases monotonously in t for t ∈ [0,∞)
and converges to the manipulability m from below. Hence,
ν(t) < m ≤ λmax(J>J) = λmax((1>Nf

⊗ Id)V V >(1Nf
⊗

Id)) ≤ λmax((1>Nf
⊗ Id)(1Nf

⊗ Id)) = λmax(NfId) = Nf .

2) Connection to Stiffness and Rigidity Indices: The stiff-
ness matrix and the rigidity indices are defined for rigid
formations in 2-d plane to measure the robustness of a
multi-agent system in maintaining a given formation [9].
Assume that the agents are perturbed by an infinitesimal
displacement, δx0, from their original configuration that
satisfies given desired distances. While the original definition
of the stiffness matrix is based on a spring-mass analogy, the
matrix coincides with the Hessian of the edge-tension energy
E if the notion of stiffness is applied to the formation control
ẋ = −∂E(x)

∂x

>
[9].

The rigidity indices are defined based on the eigenvalues
of the stiffness matrix. Therefore, in this context, it captures
the rate of convergence to the desired configurations of the
agents. Consider the case N = Nf and N` = 0 in (4):

˙δx = −Hδx, (11)

where the initial configuration is perturbed as δx(0) = δx0.
Suppose that the eigenvalues of H are sorted in descending
order as λ1 ≥ · · · ≥ λr > 0. Given a rigid formation,
(x, G), with a generic configuration, x. If d = 2 then r =
rank(H) = 2N−3, and H has three zero eigenvalues; here,
the smallest non-zero eigenvalue (i.e., the fourth-smallest

eigenvalue) is λr(H). To capture the rate of convergence
in (11), the indices λr(H) and ( 1

r

∑r
k=1 λk(H)−1)−1 are

proposed in [9] as the worst-case rigidity index (WRI) and
the mean rigidity index (MRI), respectively.

Consequently, we can make the following remark as the
relevance of the responsiveness to the rigidity indices.

Remark 3 The rate of the convergence in (10) is dictated
by the smallest non-zero eigenvalue of Hff .

From Remark 2 and 3, we see that the responsiveness is the
unified notion of both the manipulability and stiffness in the
following sense: In (9), the responsiveness notion combines
the effective input directions determined by the eigenvectors
{v1, ..., vr} of Hff , which characterizes the manipulability
of the network, with the rate of convergence given by the
eigenvalues {λ1, ..., λr} of Hff , which characterizes the
stiffness of the network.

IV. OPTIMIZATION OF LEADER-FOLLOWER NETWORK

A. Most Effective Leader Position

Provided we are given the freedom to adjust the position
of the leader, how can we find the optimal leader’s position
in terms of maximizing the manipulability in the worst-
case scenario? We will introduce the gradient-based method
to solve this problem. For convenience, let us define the
operator D as DA , ∂A/∂θ, where A is a scalar or a matrix
which depends on some variable θ.

Lemma 2 For the single leader case (N` = 1), the follow-
ing identity holds:

H†
ff D

(
H†

ff Hf `

)
= H†

ff H†
ff

(
(DHf `)− (DHff )H†

ff Hf `

)
.

See Appendix B for the proof.

Lemma 3 ([14]) Suppose X is a real symmetric matrix. The
i-th largest eigenvalue of X is denoted by λi(X) and the
corresponding normalized eigenvector by vi. Then,

Dλi(X) = v>i (DX) vi.

Proposition 3 For the single leader case (N` = 1), if the
minimum manipulability index λmin(J>J) > 0, then its
gradient with respect to the leader’s position x` is

∇λmin(J>J) = 2
∑

j∈N (`)

(Xjj + X>
jj + Yj + Y >

j )(xj − x`),

where
• v is the normalized eigenvector associated with the

eigenvalue λmin(J>J);
• Xjj is the d-by-d block of the matrix X ∈ RNf d×Nf d ,

X = R†fR`vv>R>` R†>f H†
ff ;

• Yj is the d-by-d block of the matrix Y ∈ Rd×Nf d,

Y = vv>R>` R†>f H†
ff ;

Proof: In the single leader case, since W2 is positive
definite (Remark 1), we always have H†

ff Hf ` = R†fR`.



Therefore, without loss of generality we can assume W2 =
IM . By Lemma 3,

Dλmin(J>J) = v>
(
D(J>J)

)
v = 2v>

(
J>DJ

)
v

= 2 trace
(
vv>J>DJ

)

= 2 trace
(
vv>H>

f `H
†
ff D

(
H†

ff Hf `

))
.

Using Lemma 2 and the fact that H†
ff Hf ` = R†fR` for the

single leader case, we have

Dλmin(J>J) = 2 trace (Y DHf `)− 2 trace (XDHff ) .

If we view X and Y as constants, it is not hard to see that

trace (Y DHf `) =
∑

j∈N (`)

trace
(
YjD

(−(xj − x`)(xj − x`)>
))

= −
∑

j∈N (`)

D
(
(xj − x`)>Yj(xj − x`)

)

=
∑

j∈N (`)

(xj − x`)>
(
Yj + Y >

j

)
D(x` − xj).

Similarly,

trace (XDHff ) = −
∑

j∈N (`)

(xj − x`)>
(
Xjj +X>

jj

)
D(x` − xj).

Now we replace D with ∂
∂x`

. Note that ∂
∂x`

(x` − xj) = Id.
Therefore,

∂λmin(J>J)
∂x`

= 2
∑

j∈N (`)

(xj−x`)>
(
Xjj +X>

jj +Yj +Y >
j

)
,

which implies the desired conclusion.
The gradient information enables us to use the gradient de-

scent method to search for a locally optimal leader’s position
which maximizes the minimum (worst-case) manipulability.

B. Most Efficient Link Resource Allocation

In what follows we consider the instance given by Exam-
ple 1. We can view the weights cij of the communication
links as some resource (e.g. signal power). Thus, it is inter-
esting to see that given constant amount of resource, what
is the best link resource allocation scheme that maximizes
the convergence rate of the responsiveness as mentioned
in Remark 3. This can be formulated as the following
optimization problem,

maximize
cij

λr(Hff ) (12)

subject to
∑

{i,j}∈E

c2
ij ≤ C, and cij = 0 for {i, j} 6∈ E,

where λr(Hff ) denotes the smallest non-zero eigenvalue of
Hff (r = rank(Hff )). C is a constant describing the total
amount of available resource. Problem (12) is actually a
convex program, and the convexity ensures that the numerical
solution of the link resource allocation problem can be
computed very efficiently.

Note that the link resource allocation problem cannot be
well formulated for maximizing the manipulability in the
single leader case. This is because the manipulability only
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Fig. 1. Formations used in the examples. The black and white circles
depict the leader and the followers, respectively, and the lines depict the
communication links between agents.

depends on the binary topology of the graph, not the link
weights. In contrast, the responsiveness makes it possible to
formulate the problem as in (12) by taking the convergence
rate into account.

V. EXAMPLE

This section first demonstrates the basic characteristics of
the responsiveness, and then shows some examples of the
optimization problems. Throughout this section, we consider
six formations, (x, Gi) (i = 1, ..., 6), shown in Fig. 1, and
we simply use Gi (i = 1, ..., 6) to denote each formation
since their agent configurations are identical. Here, G1 to G3
are non-rigid formations, and G4 to G6 are rigid formations.
The given edge-tension energy has the form of (3) with cij =
dij ∀{vi, vj} ∈ Ek; that is, W2 = IM (see also Example 1).

A. Responsiveness

First, we choose the leader’s displacement δx` =
(−ε,−ε)> as the input to the network, where we suppose
ε is small enough so that the first-order approximation in
(4) is valid. 1 Table I shows the responsiveness at t = 2 and
t = 10, and it also shows the manipulability, WRI, and MRI.
Fig. 2 shows the change of the responsiveness ν(t) in time.
We first observe that in each formation, the responsiveness
converges to the value of manipulability (Remark 2). We also
see that, while the manipulability can be used to compare
non-rigid formations, it takes the same value for G4 to G6
since these formations are rigid (Proposition 1). Meanwhile,
rigidity indices (WRI and MRI) successfully evaluate rigid
formations in terms of the convergence rate; however, the
they are not defined in non-rigid formations and cannot be
used for comparing formations such as G1 to G3.

On the other hand, from Fig. 2(a) we observe that the re-
sponsiveness can compare arbitrary formations, for example,
G2 (non-rigid) and G4 (rigid). An interesting observation

1By the definition of the responsiveness and manipulability, their values
are not affected by the scale of δx`.



TABLE I
COMPARISON OF THE RESPONSIVENESS INDEX, THE MANIPULABILITY INDEX, AND THE RIGIDITY INDICES. WHILE THE RIGIDITY INDICES ARE NOT

DEFINED FOR NON-RIGID FORMATIONS, THE SMALLEST NON-ZERO EIGENVALUE λr AND ( 1
r

Pr
k=1 λ−1

k )−1 ARE SHOWN FOR WRI AND MRI,
RESPECTIVELY (SHOWN IN THE PARENTHESES).

Formation Is rigid? r Resp. ν(t = 2) ν(t = 10) Manip. m WRI (λr) MRI
G1 No 3 1.9856 2.2824 2.2825 (1.0400) (1.3151)
G2 No 4 2.0092 2.9838 2.9912 (0.6257) (1.2288)
G3 No 4 1.0212 1.2960 1.2961 (0.9581) (1.2457)
G4 Yes 5 0.8717 2.6740 2.9953 0.2710 0.8025
G5 Yes 5 2.0583 2.9794 2.9953 0.4771 1.0279
G6 Yes 5 2.1791 2.9946 2.9953 0.8918 1.5220
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(a) Non rigid (G1, G2, G3) and rigid (G4)
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(b) Rigid formations (G4, G5, G6)

Fig. 2. Responsiveness ν(t) under leader input δx` = (−ε,−ε)>. (a)
Non-rigid formations G1 (dashed line), G2 (dashed-dotted), G3 (dotted), and
rigid formation G4 (solid). (b) Rigid formations G4 (solid), G5 (dashed),
and G6 (dotted).

here is that a non-rigid formation (e.g., G2) can outperform
a rigid formation (e.g., G4) in terms of the responsiveness if
t is not so large. In addition, the responsiveness provides a
framework to evaluate the effectiveness of not only network
topologies and agent configurations but also input directions
of the leader. In fact, from Fig. 3, which shows a comparison
of the responsiveness under different input directions, we
see that the responsiveness successfully captures the effective
input directions in terms of the followers’ response (see also
Corollary 1 for the most/least effective inputs).

B. Leader-Follower Network Optimization

We now see some numerical examples of formation opti-
mizations as is discussed in Section IV. Fig. 4 depicts the
optimal leader’s position in each instance where the topology
is given as in Fig. 1 and the positions of the followers are
assumed fixed. It is worth noting that a legitimate solution
for optimal leader’s position does not always exist. For
example, in G3, the optimal leader’s position tends to one
of the followers, but the asymptotic result does not give a
valid solution (the two agents collide). Another interesting
observation is that for every rigid formation, the optimal
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Fig. 3. Responsiveness under different input directions: δx` = (−ε, 0)>
(top) and (−ε, ε)> (bottom), where formations G1 to G4 are used.

leader’s position is always the centroid of the remaining of
the agents, in which case the manipulability is isotropic and
equal to Nf . Due to space limit, the theoretical analysis of
these results will be presented in our future work.

Fig. 5 shows the optimal link resource allocation schemes
under the same set of graph topologies. In each instance, we
set C to be the number of edges so that the average values of
c2
ij is identity. The small number beside each link in Fig. 5

is the value of c2
ij for that link. We should notice that in

the optimal scenarios, the amount of resource allocated to
the links that are connected to the leader is not necessarily
larger than that to the other links.

VI. CONCLUSION

In this paper, we unify the previously defined measures
of instantaneous network responses in multi-agent systems,
namely those of stiffness and manipulability, through the
notion of responsiveness. The responsiveness index is a
measure of how well the system responds to the movements
of leaders, and therefore it enables us to evaluate the ef-
fect of different choices of network topologies and agent
configurations given input directions. Numerical examples
show the proposed index can be used to compare variety
of topologies, and two optimization problems that find the
optimal leader’s position and the optimal allocation of link
resource are addressed. Future work includes the adaptive



(a) G1 (b) G2 (c) G3‡

(d) G4 (e) G5 (f) G6

Fig. 4. Optimal leader position for maximizing the minimum manipula-
bility.

‡ This is the asymptotic configuration, but not a valid solution.
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Fig. 5. Optimal link resource allocation schemes for fastest responsiveness
convergence.

optimization of network properties so as to improve the effect
of human inputs through the leaders.
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APPENDIX

A. Proof of Proposition 1

Proof: Let Ji(x, Gi) = −Rif
†Ri` (i = 1, 2), where

Ri = [Rif |Ri`] is the rigidity matrix of the formation
(x, Gi). Here Rif (1Nf

⊗ Id) = −Ri` (i = 1, 2) holds by
(2). It is also clear that null(R1f ) = null(R2f ) under any
rigid formations as the rotational freedom around the leader
always remains; the projection matrices onto the row space
of R1f and R2f are identical: R†1fR1f = R†2fR2f . Hence,
J1 = −R1f

†R1` = R1f
†R1f (1Nf

⊗ Id) = R2f
†R2f (1Nf

⊗
Id) = −R2f

†R2` = J2, and the proposition follows.

B. Proof of Lemma 2

Proof: Recall that for the single leader case, the column
space of Hf ` is contained in the column space of Hff . Since
Hff is real symmetric, Hff H†

ff = H†
ff Hff . Furthermore,

H†
ff Hff is the projection matrix onto the column space of

Hff . The above facts imply the following,

H†
ff H†

ff Hff = H†
ff , Hff H†

ff Hf ` = Hf `.

According to [15] and the above identities, we have

H†
ff (∂H†

ff )Hf ` = H†
ff

(
−H†

ff (∂Hff )H†
ff + H†

ff H†
ff (∂Hff )

−H†
ff H†

ff (∂Hff )Hff H†
ff + (∂Hff )H†

ff H†
ff

− H†
ff Hff (∂Hff )H†

ff H†
ff

)
Hf `

= −H†
ff H†

ff (∂Hff )H†
ff Hf `.

Finally,

H†
ff ∂(H†

ff Hf `) = H†
ff (∂H†

ff )Hf ` + H†
ff H†

ff ∂Hf `

= H†
ff H†

ff

(
(∂Hf `)− (∂Hff )H†

ff Hf `

)
,

which concludes the proof.


