Readiness in Formation Control of Multi-Robot System

Zhihao Xu (Univ. of Würzburg) <u>Hiroaki Kawashima (</u>Kyoto Univ.) Klaus Schilling (Univ. of Würzburg)

Motivation

Scenario:

Vehicles maintain an equally distributed formation on a circle with a moving object always at its centroid.

What motion of the vehicles is the best to track the target object in formation?

Spiral motion?

Which initial headings give the best response to the arbitrary movement of the target object?

How much the formation is "ready" for any perturbation?

- Formation control
 - Distance-based formation control
 - Unicycle model for individual agents
- Readiness
 - Definition from a general viewpoint
 - Readiness optimization
- Case study
 - Formation control with unicycle models
 - Optimal readiness
- Conclusion

- Formation control
 - Distance-based formation control
 - Unicycle model for individual agents
- Readiness
 - Definition from a general viewpoint
 - Readiness optimization
- Case study
 - Formation control with unicycle models
 - Optimal readiness
- Conclusion

Distance-Based Formation Control

• Interaction rule for follower agent *i* :

 $p_i \in \mathbb{R}^2$: position

$$\dot{p}_i(t) = -\sum_{j \in \mathcal{N}(i)} \frac{\partial E_{ij}(\|p_i - p_j\|)}{\partial p_i}^T = -\sum_{j \in \mathcal{N}(i)} w_{ij}(\|p_i - p_j\|)(p_i - p_j)$$

 E_{ij} : pair-wise edge-tension energy $E_{ij}(||p_i - p_j||) = 0$ if $||p_i - p_j|| = d_{ij}$

weighted consensus protocol (w_{ij} depends on $||p_i - p_j||$)

5

Leader-Follower Formation Control

- Assume one agent (leader) can be arbitrarily controlled
- Remaining agents (followers) obey the original interaction rule

$$p = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_N \end{bmatrix} \stackrel{p_f \in \mathbb{R}^{2N_f}}{\stackrel{p_f \in \mathbb{R}^2}{\stackrel{p_f \in \mathbb{R}^2}\stackrel{p_f = \frac{p_f = \frac{p_f = \frac{p_f = p_f = p_f = p_f \stackrel{p_f \in \mathbb{R}^2}{\stackrel{p_f = \frac{p_$$

Unicycle Model

Model

$$\dot{p}_i = \begin{bmatrix} \cos \theta_i \\ \sin \theta_i \end{bmatrix} v_i$$
$$\dot{\theta}_i = \omega_i$$

i: follower's ID ($i = 1, ..., N_f$)

 p_i : position

 θ_i : heading direction

 v_i : linear velocity

 ω_i : angular velocity

We want to realize

$$\dot{p}_i = \underbrace{\mu_i \triangleq -\frac{\partial E}{\partial p_i}^\top(p)}$$

• Off-center point control

$$\tilde{p}_{i} = p_{i} + \epsilon \begin{bmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{bmatrix} \qquad \begin{array}{c} \text{Consider } \dot{\tilde{p}}_{i} = \mu_{i} \\ \text{instead of } \dot{p}_{i} = \mu_{i} \\ \end{array} \qquad \begin{array}{c} p_{i} \\ p_{i} \\ p_{i} \\ p_{i} \\ p_{i} \\ p_{i} \\ \end{array} \qquad \begin{array}{c} p_{i} \\ \end{array} \qquad \begin{array}{c} p_{i} \\ p_$$

Dynamics of Unicycle Formation Control

• **Dynamics** (stacked vector form)

$$\begin{cases} \dot{p}_f = f_p(p_f, \theta_f, p_\ell) \triangleq -S_1(\theta_f) S_1(\theta_f)^\top \frac{\partial E}{\partial p_f}^\top (p_f, p_\ell) \\ \dot{\theta}_f = f_\theta(p_f, \theta_f, p_\ell) \triangleq -\frac{1}{\epsilon} S_2(\theta_f)^\top \frac{\partial E}{\partial p_f}^\top (p_f, p_\ell) \end{cases}$$

$$\theta_f = [\theta_1, ..., \theta_{N_f}]^\top$$

$$S_1(\theta_f) \triangleq \operatorname{blockdiag} \left(\begin{bmatrix} \cos \theta_i \\ \sin \theta_i \end{bmatrix} \right)$$

$$S_2(\theta_f) \triangleq \operatorname{blockdiag} \left(\begin{bmatrix} -\sin \theta_i \\ \cos \theta_i \end{bmatrix} \right)$$

- Formation control
 - Distance-based formation control
 - Unicycle model for individual agents
- Readiness
 - Definition from a general viewpoint
 - Readiness optimization
- Case study
 - Formation control with unicycle models
 - Optimal readiness
- Conclusion

Properties for Leader-Follower Formation Control

- Point-to-point (formation control) property
 - Controllability [Rahmani, Mesbahi&Egerstedt SIAM09]
 Characterized by
 Characterized by
- Instantaneous/short-term response of formation
 - Manipulability [Kawashima&Egerstedt CDC11]
 - Responsiveness [Kawashima,Egerstedt,Zhu&Hu CDC12]
 Characterized by network

⊗ Dependent on the single-integrator model of mobile agents.

How to characterize the headings of nonholonomic (e.g. unicycles) agents in terms of shot-term response?

Readiness of multi-robot formation

Response to the leader's perturbation

Readiness from general viewpoint

"Readiness" is an index to describe how well the initial condition is prepared for a variety of possible disturbances (inputs)

• Given the dynamics of the agents:

$$\dot{x} = f(x(t), u)$$

(Ex.) Unicycle formation case $x_0 \triangleq \theta_f(0)$ $u \triangleq \theta_\ell, U \triangleq [0, 2\pi]$

with the initial condition $x(0) = x_0 \in \mathbb{R}^d$, where $u \in U$ is an exogenous input which is constant in short interval [0, T]

• <u>Readiness</u> for the response in interval [0, T] is characterized by

$$J(x_0) = \int_U \left(\int_0^T L(x(t), u) dt + \Psi(x(T), u) \right) du.$$

(Ex.) Unicycle formation case L(x,u) = 0, $\Psi(x(T),u) \triangleq E(p(T),\theta_{\ell})$

Readiness Optimization

• Optimal initial condition x_0^*

$$x_0^* = \underset{x_0}{\operatorname{arg min}} J(x_0) \qquad J(x_0) = \int_U \left(\int_0^T L(x(t), u) dt + \Psi(x(T), u) \right) du.$$

subject to $\dot{x}(t) = f(x(t), u)$
 $x(0) = x_0$

• Optimality Conditions (derived by the calculus of variations)

- Formation control
 - Distance-based formation control
 - Unicycle model for individual agents
- Readiness
 - Definition from a general viewpoint
 - Readiness optimization
- Case study
 - Formation control with unicycle models
 - Optimal readiness
- Conclusion

Case Study: Unicycle formation

- Perturbation (input) on leader $\delta p_{\ell} = \gamma \begin{bmatrix} \cos \theta_{\ell} \\ \sin \theta_{\ell} \end{bmatrix}$, $\theta_{\ell} \in [0, 2\pi]$
- Optimization of followers headings

$$\min_{\theta_{f0}} J(\theta_{f0}) = \int_{0}^{2\pi} E(p(T), \theta_{\ell}) d\theta_{\ell}$$

Terminal cost

Gradient descent started by tangential θ_f

Cost Comparison (1): Cost J for Readiness

Cost Comparison (2): Distribution over θ_{ℓ}

Conclusion

- *Readiness* notion to characterize the initial condition of nonholonomic multi-agent systems
- Optimality condition (first-order necessary condition)

Given Future Work

- Utilize the readiness to optimize both headings and positions
- Investigate optimization algorithm which can find global minima

Acknowledgement:

Dr. Egerstedt (Georgia Inst. of Tech.) for his valuable suggestions on the work.