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Abstract

This paper introduces the notion of manipulability to mobile, multi-agent networks as a tool to analyze the instantaneous
effectiveness of injecting control inputs at certain, so-called leader nodes in the network. Effectiveness is interpreted to
characterize how the movements of the leader nodes translate into responses among the remaining follower nodes. This
notion of effectiveness is a function of the interaction topologies, the agent configurations, and the particular choice of inputs
used to influence the network. In fact, classic manipulability is an index used in robotics to analyze the singularity and
efficiency of configurations of robot-arm manipulators. To define similar notions for leader-follower networks, we use a rigid-
link approximation of the follower dynamics and, under this assumption, we prove that the instantaneous follower velocities
can be uniquely determined from that of the leaders’, which allows us to define a meaningful and computable manipulability
index for the leader-follower networks. This paper examines the property of the proposed index in simulation and with real
mobile robots, and demonstrates how the index can be used to find effective interaction topologies.
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1 Introduction

Consider a system consisting of multiple mobile units,
connected together through an information-exchange
network, where the agents use the information-exchange
network for their coordination. If the movement of a
particular agent is thought of as the input to the sys-
tem, one can ask a number of questions pertaining to
the input’s effect on the rest of the system, including:
(1) What is the set of states reachable under this con-
trol structure?, (2) How “effective” is the control input
in terms of the network’s response?, and (3) How can
we design or adaptively improve the network topology
to render it more “amenable” to the control inputs?

Significant progress has been made by the community
over the last decade trying to understand networked
dynamical systems in general, e.g., [9,11,26,19,17]. A
number of decentralized mobility and coordination al-
gorithms have been used successfully for achieving and
maintaining formations [12,21], for covering areas [3,16],
or for securing and tracking boundary curves [18,29],
just to name a few.

Email addresses: kawashima@i.kyoto-u.ac.jp (Hiroaki
Kawashima), magnus@gatech.edu (Magnus Egerstedt).

For such mobile networks with a given set of interaction
laws, it is sometimes desirable to be able to influence the
agents by injecting external control signals. One way in
which such control authority can be achieved is by in-
jecting the control signals at particular input nodes, and
such an organization is referred to as a leader-follower
network. In this paper, we follow this route, and con-
sider the situation where each follower agent is moving
based solely on locally available information, while the
leaders’ movements are dictated by the external control
input. In fact, a large body of work has emerged con-
cerning how to control such networks. Examples include
optimal control [17], containment control [4,10], and for-
mation control [7,20].

Question (1) in the first paragraph is intimately linked
to the controllability properties of such leader-follower
networks, which has been investigated, for example,
in [23,25]. Controllability, however, is a point-to-point
property in the sense that it characterizes what states
are reachable from one another. In this paper, we ignore
this question and focus instead on a more modest issue,
namely Question (2), i.e., the question of how “effec-
tive” the control input is over a short time horizon. This
is not a controllability question but rather it connects
the input signals to instantaneous system responses.
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Fig. 1. Effectiveness is defined using the ratio between the
norm of the followers’ velocities (response) and that of the
leader’s velocity (input) (Nℓ = 1 case). The filled circle x5 is
the leader and dashed lines depict interconnections of agents.

In particular, this paper considers a leader-follower
network in which each follower tries to maintain given
desired distances from its neighbors so as to achieve
a rigid/non-rigid formation. Under such situations,
instantaneous “effectiveness” of external inputs is par-
ticularly important in several applications, such as in
emerging area of human-swarm interaction. While there
are a number of ways humans interact with a large col-
lection of robots (e.g., [5,15]), we are interested in an
approach that a human operator controls the designated
robot in the network as the leader. What is critical here
is that humans are crucially sensitive to how intuitive
his/her inputs are propagated through the network and
effectively manipulate the movements of the follow-
ers [6]. However, it is still not well-understood how such
instantaneous system responses should be measured.

To address the notion of input “effectiveness”, we borrow
the notion of manipulability, and transfer it to leader-
follower networks as a tool to analyze the instantaneous
effectiveness of the leader inputs to the network un-
der given agent configurations and network topologies
(Fig. 1). In robotics, the manipulability indices have
been proposed asmeans for analyzing the singularity and
efficiency of particular configurations when controlling
robot-arm manipulators [27,1,2]. And, while the origi-
nal manipulability indices are based on taking the Jaco-
bian of the kinematic relation between the input angu-
lar velocities of the joints and the generated velocities
of the end-effectors, leader-follower network “links” are
not rigid in the same way. As such, we are forced to ap-
proximate the interaction dynamics in order to be able
to define manipulability in terms of the instantaneous re-
lation between the leaders’ and the followers’ velocities.

Initial work along these lines was done in [13], and here
we extend this contribution by establishing novel prop-
erties of the proposed index, applying these concepts to
real mobile robots, and demonstrating how it can be used
to find effective topologies. In fact, the contributions in
this paper are twofold. First, we show how the dynam-
ics of leader-follower networks can be approximated by
assuming all the edges as rigid links when the followers
move fast enough to maintain given desired distances.
Second, we introduce the notion of manipulability to
leader-follower networks as the index of how leaders’
movements have impacts on followers’ movements.

2 Leader-Follower Networks

2.1 Multi-Agent Networks with Leaders and Followers

Let xi(t) ∈ Rd (i = 1, ..., N) be the state of agent i at
time t. 1 Then the overall state (configuration) of the
network is given by x(t) = [xT

1 (t), ..., x
T
N (t)]T ∈ RNd.

Now, assume that these agents are arranged over an
information-exchange network, with Nℓ out of N agents
assigned to be leaders, whose movements are considered
to be the input to the overall system. The remaining
Nf = N −Nℓ agents are referred to as followers, each of
which obeys a given control law based solely on locally
available information.

In this paper, we consider the situation where the in-
teraction dynamics are defined through pairwise inter-
actions. We say that when follower agents i and j are
connected, they can share relative state information, and
their pairwise control task is to maintain the distance
∥xi − xj∥ to a pre-specified, positive value dij . If one
of the agents in a connected pair is a leader agent and
the other is a follower, then the follower dynamics is de-
signed so as to maintain the distance.

Using a graph representation of this interaction struc-
ture, the agents are described by nodes V = {v1, ..., vN}
and the connections between agents become edges E ⊆
V×V, where the number of edges is M = |E| (the cardi-
nality of E). Then, the overall network is described by the
graph G = (V,E). In this paper, we mostly consider net-
works whose underlying graphs are undirected (the in-
terconnections are symmetric), static, and connected. 2

2.2 Leader and Follower Assignments

To explicitly denote the designation of nodes as either
being leaders or followers, we introduce the following
notation: Let ℓ : {1, ..., Nℓ} → {1, ..., N} be an injec-
tive function whose image, ℓ({1, ..., Nℓ}) = {ℓ(i)|i =
1, ..., Nℓ}, is the set of leaders indices. Let δi be a vec-
tor whose i-th entry is 1 and all the remaining entries
are 0s. Using the N ×Nℓ matrix ∆ℓ ≜ [δℓ(1), ..., δℓ(Nℓ)],

we can define a leader indicator vector as δ̂ℓ ≜ ∆ℓ1Nℓ
,

where 1p is a p-dimensional column vector with 1s in

all its entries. This indicator vector, δ̂ℓ contains the in-
dices of the leaders and in a similar way, we can define a
corresponding follower indicator vector by defining the

1 This could, for instance, be the position of the mobile agent
with d = 2 or d = 3. In this paper, we primarily address the
d = 2 case – especially in examples – and use terms such as
“movement” and “velocity” to reflect this particular example
while most of the discussion holds in arbitrary dimensions.
2 The assumption about static networks will only be used
instantaneously, i.e., over short time-horizons. During the
actual evolution of the system, the edge set will, however, be
allowed to vary over time, e.g., as a function of inter-agent
distances.
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injective function f : {1, ..., Nf} → {1, ..., N} such that
ℓ({1, ..., Nℓ}) ∪ f({1, ..., Nf}) = {1, ..., N} and the ma-

trix ∆f ≜ [δf(1), ..., δf(Nf )]. As a consequence, we have

that δ̂f ≜ ∆f1Nf
becomes the follower indicator vector.

Using this notation, we can define the permutation ma-
trix P = [∆f |∆ℓ], satisfying PTP = PPT = IN , where
Ip denotes the p × p identity matrix. Besides, relations

such as ∆ℓ∆
T
ℓ = Diag(δ̂ℓ), ∆

T
ℓ ∆ℓ = INℓ

, ∆T
ℓ 1N = 1Nℓ

,

and δ̂Tℓ 1N = Nℓ will be used throughout the paper,
where Diag(a) is the diagonal matrix whose diagonal en-
tries is the vector a.

Now, the states of the leaders and followers can be
grouped together and denoted by vectors xℓ(t) ∈ RNℓd

and xf (t) ∈ RNfd, respectively:

xℓ(t) = [xT
ℓ(1)(t), ..., x

T
ℓ(Nℓ)

(t)]T = (∆T
ℓ ⊗ Id)x(t),

xf (t) = [xT
f(1)(t), ..., x

T
f(Nf )

(t)]T = (∆T
f ⊗ Id)x(t),

(1)

and
x(t) = (∆ℓ ⊗ Id)xℓ(t) + (∆f ⊗ Id)xf (t), (2)

where ⊗ denotes the Kronecker product.

Example 2.1 The functions ℓ(i) = Nf + i (i =
1, ..., Nℓ) and f(i) = i (i = 1, ..., Nf ) assign the
last indices of {1, ..., N} to the leaders. Thus, ∆f =[
INf

|0
]T

,∆ℓ = [0|INℓ
]
T
, and x = [xT

f , x
T
ℓ ]

T , where

xf = [xT
1 , ..., x

T
Nf

]T and xℓ = [xT
Nf+1, ..., x

T
N ]T . (See

Fig 1 for Nf = 4, Nℓ = 1 case.)

2.3 Edge-Tension Energies

To formulate the followers’ dynamics, we use a general,
energy-based definition (e.g., [17]), which enables agents
to achieve a distance-based formation. Let

E(x) = 1

2

N∑
i=1

N∑
j=1

Eij(xi(t), xj(t)) (3)

be the edge-tension energy, which is the summation of

Eij(xi, xj) =

{
1
2 (eij(||xi − xj ||))2 {vi, vj} ∈ E

0 {vi, vj} /∈ E,
(4)

where eij : R+ → R is a strictly increasing, twice dif-
ferentiable function such that eij(dij) = 0 (dij > 0)

and e′ij(dij) ̸= 0, where e′ij(z) ≜
deij(z)

dz . We also assume
that connected agents do not have identical states, i.e.,
we assume that ||xi − xj || > 0 ∀{vi, vj} ∈ E.

An example of a typical choice for the function eij is (see
[17] and the references therein)

eij(||xi − xj ||) = cij(||xi − xj || − dij), (5)

where the constant cij(> 0) is a weight on edge {vi, vj}.

The reason for formulating these edge-tensions is that
they can be used to derive distributed interaction laws
for the followers in a straightforward and systematic
manner, which is the topic of the next section.

2.4 Agent Dynamics

Given leaders’ movements as the input to the network:

ẋℓ(t) = [ẋT
ℓ(1)(t), ..., ẋ

T
ℓ(Nℓ)

(t)]T = uℓ(t), (6)

we define the dynamics of the followers such that each
of the followers tries to minimize their related parts of
the edge-tension energy (3) in a decentralized manner
through a gradient descent direction:

ẋi(t) = −
∑

j∈N (i)

∂Eij(xi(t), xj(t))

∂xi

T

, i ∈ f({1, ..., Nf}),

(7)
whereN (i) = {j ∈ {1, ..., N} | {vi, vj} ∈ E} is the neigh-
bor set of agent i. That is, the dynamics of the followers
is designed such that each of the followers tries to main-
tain the desired distances to adjacent agents. Using the

facts that Eij = Eji and ∂E
∂xi

= 1
2

∑
j∈N (i)

(
∂Eij

∂xi
+

∂Eji

∂xi

)
,

the dynamics of overall followers in the network can be
described by

ẋf (t) = [ẋT
f(1)(t), ..., ẋ

T
f(Nf )

(t)]T = −∂E(x)
∂xf

T

. (8)

Therefore, using this dynamics, the followers try to de-
crease (locally) the total energy (3) since Ė = ∂E

∂xf
ẋf +

∂E
∂xℓ

ẋℓ = −|| ∂E
∂xf

||2 + ∂E
∂xℓ

ẋℓ. In particular, if the leaders

are not moving (i.e., ẋℓ = 0), the energy will not be in-
creased (decreased in many situations) by the followers,
thus serving as a prime candidate for a Lyapunov func-
tion when designing formation controllers.

Since the edge-tensions are are functions of the relative
distances ∥xi − xj∥, it follows that

∂Eij(xi, xj)

∂xi
= wij(||xi − xj ||)(xi − xj)

T ,

where wij(z) ≜ {eij(z)e′ij(z)}/z, with z > 0. Thus, (7)
becomes a state-dependent, weighted consensus equa-
tion [17].

In other words, letD ∈ RN×M be the incidencematrix of
graph G with an arbitrary but consistent assignment of
the orientation on the edges. Let W (x) ∈ RM×M be the
diagonal weight matrix, where [W (x)]kk = wikjk(||xik −
xjk ||), where ik and jk are the agents connected by edge
k. Then, the weighted graph Laplacian of G becomes
Lw(x) = DW (x)DT ∈ RN×N . As a consequence, if all
agents were followers, the interaction laws become ẋ =
−(Lw⊗Id)x. Therefore, noting the relation (X⊗Id)(Y ⊗
Id) = XY ⊗ Id and using (1), we can rewrite (8) on
ensemble form as
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ẋf (t) = −((∆T
f Lw)⊗ Id)x(t).

By adding the leaders to the formulation, the dynamics
of all the agents combined become

ẋ = −((Diag(δ̂f )Lw)⊗ Id)x+ (∆ℓ ⊗ Id)uℓ, (9)

where we note that (9) is a nonlinear system since Lw is
a function of x.

3 Manipulability of Leader-Follower Networks

One of the most well-studied tools for analyzing the ef-
fectiveness of external inputs to networked systems is
controllability and its related notions such as spectral
properties of the controllability Grammian. And, as al-
ready noted, controllability is a point-to-point, global
property in that it dictates in-between what states it is
possible to move the system.

As the setup in this paper is a situation where external
inputs (6) are given in conjunction with the secondary
objective of ensuring that the agents stay in formation
through (8) (e.g., by dragging networked robots toward
a target location or in some specified direction). In such
situations, a more instantaneous notion of input effec-
tiveness would be useful in that it would capture some
local (in time) notion of “progress”.

To address the instantaneous effects that the inputs have
on the rest of agents, we here introduce the notion of ma-
nipulability of leader-follower networks. In fact, we de-
fine the manipulability of leader-follower networks based
on the ratio between the norm of the followers’ velocities
and that of the leaders’ velocities, similar to the defini-
tion used by Bicchi, et al. for robotic manipulators [1,2].
Specifically, we use the following ratio:

m(x,E, ẋℓ) =
ẋT
f Qf ẋf

ẋT
ℓ Qℓẋℓ

, (10)

where Qf = QT
f ≻ 0 and Qℓ = QT

ℓ ≻ 0 are positive
definite weight matrices.

Note that the manipulability index is a function of in-
put directions of leaders, network topologies, and agent
configurations. Therefore, given such a measure, one of
these properties can be optimized when the other two
properties are given. As an application of this notion,
one can consider the problem of finding the best direc-
tions (axes) of inputs, given leader nodes, as the maxi-
mization of (10) with respect to ẋℓ (see also Section 4.2):

ẋℓ,max(x,E) = arg max
ẋℓ

m(x,E, ẋℓ), (11)

mmax(x,E) =max
ẋℓ

m(x,E, ẋℓ). (12)

Similarly, the problem of finding the best network topol-
ogy for given agent configurations and leader inputs can
be formulated, for example, by

Emax = arg max
E

m(x,E, ẋℓ) subject to |E| ≤ Mlim,

(13)
which we will investigate further in Section 5. Another
possible application is the selection of effective leaders,
which was addressed in [14].

While manipulability is an intuitively clear notion, it
needs to be connected to the actual agent dynamics from
the previous section in a meaningful way, which presents

some difficulty. The reason is that since ẋf = − ∂E
∂xf

T
is

a function of xf and xℓ but not ẋℓ, we need to introduce
an integral action to see the influence of ẋℓ. However,
the input velocity ẋℓ is not necessarily constant over the
time interval of the integration. Thus, it is impossible to
calculate an instantaneous measure given by (10).

Two choices present themselves to overcome this diffi-
culty. The first is to change the agent dynamics. But,
we do not want to follow that route since edge-tension
functions (and weighted consensus equations) are used
quite frequently. As such, to define a notion that is prac-
tically relevant, we choose to go with a second option
instead, namely to introduce an approximate notion of
manipulability, i.e., to assume that the followers move
fast enough to always maintain the desired distances.
Although this is clearly not always the case, we will see
in simulation as well as in robotic experiments that it
is still a reasonably good approximation of the network
dynamics.

4 Approximate Manipulability

As stated, we need to be able to relate the follower veloc-
ities to the leader velocities and we achieve this by mak-
ing the assumption that the inter-agent distances are
perfectly maintained between agents that are adjacent
in the network. In particular, we assume the connections
of agents can be seen as rigid links; once the analogy of
kinematic chains is introduced, the rich background of
graph rigidity theory [24] and parallel mechanism can
be applied to a variety of problems (e.g., see [8] for for-
mation control and [28] for localization of a formation).
This section explores how this approximation allows us
to produce a well-defined and computable approximate
manipulability index.

4.1 Rigid-Link Approximation

We start off by describing what we mean by a rigid-
link approximation, which is a concept closely related to
rigidity theory:

Definition 4.1 A rigid-link approximation of the dy-
namics in (9) is such that all the given desired distances
{dij}{vi,vj}∈E are perfectly maintained by the followers,
i.e., ||xi − xj || = dij ∀{vi, vj} ∈ E.
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This approximation 3 makes sense if the scale of the
edge-tension energy E(t), i.e., the control gain of the fol-
lowers, is large enough compared to that of the leader
velocities ẋℓ(t) in order to achieve an effective time-
separation. Note also that, in real situations, E(t) needs
to be greater than zero in order for the followers to move,
while this approximation implies E(t) = 0 ∀t. There-
fore, the situation of Definition 4.1 is never realized
perfectly in an actual, practically implemented leader-
follower network as long as the leaders are moving. Nev-
ertheless, as will be seen in Section 5, this approxima-
tion gives us a good estimation of the actual network
responses to injected leader inputs, unless leaders move
much faster than followers.

In order to analyze the approximated dynamics, we need
to make use of the rigidity matrix, e.g., [24,8]. If the con-
nections in agent pairs associated with the edges can be
viewed as rigid links, the distances between connected
agents do not change in time. Assuming that the trajec-
tories of xi(t) are smooth and differentiable, then

d

dt
||xi − xj ||2 = 0 ∀{vi, vj} ∈ E,

and therefore

(xi − xj)
T (ẋi − ẋj) = 0 ∀{vi, vj} ∈ E. (14)

Let R(x) ∈ RM×Nd be the rigidity matrix associated to
the given state x and the underlying graph G. Then, (14)
can be written in the compact form

R(x)ẋ = 0. (15)

Here, each row of the rigidity matrix R(x) consists of N
blocks of d-dimensional row vectors. In the k-th row (k =
1, ...,M), its ik-th and jk-th blocks are (xik −xjk)

T and
−(xik−xjk)

T , respectively (the signs of these two blocks
can be swapped), and other blocks are zeros, where ik
and jk are the agents connected by edge k.

Substituting the time derivative of (2) into (15) yields

Rf (x)ẋf +Rℓ(x)ẋℓ = 0, (16)

where Rf ∈ RM×Nfd and Rℓ ∈ RM×Nℓd are defined by

Rℓ(x) ≜ R(x)(∆ℓ⊗Id), Rf (x) ≜ R(x)(∆f ⊗Id). (17)

Assume that the leaders move in a feasible manner so
that the approximation in Definition 4.1 remains appro-
priate. From the constraint equation (16), the possible

3 This should be distinguished from rigid formations, re-
ferred to as “rigid frameworks”, e.g., [24]. Flexible (non-rigid)
formations can be considered under the rigid-link approxi-
mation.

set of ẋf associated with ẋℓ can be obtained as the gen-
eral solution:

ẋf = −R†
fRℓẋℓ + [null(Rf )]p, (18)

where R†
f is the Moore-Penrose pseudo inverse of Rf ,

[null(Rf )] is a matrix whose columns span null(Rf ),

and p ∈ Rnullity(Rf ) is arbitrary, where nullity(Rf ) =
dim(null(Rf )) = Nfd− rank(Rf ). That is, infinite pos-
sibilities of ẋf may exist once the input ẋℓ is given. For
instance, ifNℓ = 1, then nullity(Rf ) ≥ d(d−1)/2, which
means that at least the rotational degrees of freedom
around the leader always remain.

In indeterminate cases, the value of the manipulability
index (10) cannot be determined uniquely, and it seems
that we need to modify the definition of manipulability,
for example, by using the “worst-case approach” [2] that
assumes the least end-effector velocity (follower veloc-
ity, in our case). However, once we consider the follower
dynamics (8) in the rigid-link approximation (Defini-
tion 4.1), we will see that p = 0 is a reasonable choice in
(18) to determine the followers’ response to the leaders’
movement. This is the key for introducing the notion of
manipulability in leader-follower networks with an ap-
proximated dynamics. In the following paragraphs, we
prepare some facts and then show how ẋf is indeed de-
termined uniquely.

Lemma 4.1 Let A ∈ Rn×n be a negative semidefinite
matrix, which can be decomposed into A = −V ΛV T ⪯ 0,
where the i-th column vector of V ∈ Rn×r is an eigen-
vector corresponding to eigenvalue λi > 0 (i = 1, ..., r),
r = rank(A), Λ = Diag([λ1, ..., λr]), and V TV = Ir.
Then, the following holds:(

lim
t→∞

∫ t

0

eA(t−τ)dτ

)
V = V Λ−1. (19)

PROOF. Using the fact that e−V ΛV T t − In =∑∞
k=1

tk

k!V (−Λ)kV T = V (e−Λt−Ir)V
T with V TV = Ir,

L.H.S.= lim
t→∞

∫ t

0

(
V (e−Λ(t−τ) − Ir) + V

)
dτ

= V lim
t→∞

∫ t

0

e−Λ(t−τ)dτ

= V lim
t→∞

Diag

([
1− e−λ1t

λ1
, · · · , 1− e−λrt

λr

])
= R.H.S. 2

Lemma 4.2 Given a linear system ẋ(t) = Ax(t) + Bu
with x(0) = 0 and constant input u ∈ Rb, where A ∈
Rn×n and B ∈ Rn×b are time-invariant matrices that
can be decomposed into A = −GTG and B = GTH,
respectively, where G ∈ Ra×n, H ∈ Ra×b, and a ∈ N,
the state converges to limt→∞ x(t) = G†Hu.
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PROOF. Let G = UΣV T be the singular value de-
composition of G, where U ∈ Ra×r and V ∈ Rn×r

are column-orthogonal matrices (i.e., V TV = Ir and
UTU = Ir), Σ ∈ Rr×r is a diagonal matrix, and r =
rank(A) ≤ min{n, a}. Then, the zero-state response of
the system converges to

lim
t→∞

x(t) = lim
t→∞

∫ t

0

eA(t−τ)dτBu

=

(
lim
t→∞

∫ t

0

e−V Σ2V T (t−τ)dτV

)
ΣUTHu

= (V Σ−2)ΣUTHu = (V Σ−1UT )Hu,

where we used Lemma 4.1. Note that all the diagonal
elements in Σ are non-zero (strictly positive); hence, Σ−1

exists and G† = V Σ−1UT . 2

Lemma 4.3 The second-order partial derivatives of the
edge-tension energy (3) with respect to xf and xℓ have
the following form when all the connected agents sat-
isfy their desired distances at x = x∗ (i.e., ||xi − xj || =
dij ∀{vi, vj} ∈ E):

∂2E
∂x2

f

∣∣∣∣∣
x=x∗

= ST
f Sf ,

∂2E
∂xf∂xℓ

∣∣∣∣
x=x∗

= ST
f Sℓ,

where ∂2E
∂x2

f

∈ RNfd×Nfd, ∂2E
∂xf∂xℓ

∈ RNfd×Nℓd, and

Sf = W ′Rf , Sℓ = W ′Rℓ.

Here, W ′ ∈ RM×M is a diagonal matrix whose elements
are

[W ′]kk =

(
w′

ikjk
(dikjk)

dikjk

) 1
2

=
e′ikjk(dikjk)

dikjk
(k = 1, ...,M),

where, ik and jk are the two agents connected by edge k,

and where w′
ij(z) ≜

dwij(z)
dz .

PROOF. See appendix A. 2

Recall that we assumed dij ∈ (0,∞) and that eij(z) is
a strictly increasing, twice differentiable function for all
{vi, vj} ∈ E. Therefore, [W ]kk ∈ (0,∞) always exists for
all k ∈ {1, ...,M}.

Example 4.1 If the edge-tension energy is given by
(5), then e′ij(z) = cij and [W ′]kk = cikjk/dikjk (k =
1, ...,M).

In what follows, we assume single-leader networks and
that the leader canmove arbitrarily, while the result here
can be extended to multi-leader cases [13].

Lemma 4.4 If Nℓ = 1, then R†
fRℓ = S†

fSℓ.

PROOF. Since all diagonal elements in W ′ are non-
zero, Rf and Sf = W ′Rf have the same row space.
Therefore, their projection matrices onto the row space
are identical:

R†
fRf = S†

fSf . (20)

Now, since we assume that Nℓ = 1, the matrices Rf and
Sf have the following properties, respectively:

Rf (1Nf
⊗ Id) = −Rℓ, Sf (1Nf

⊗ Id) = −Sℓ. (21)

In other words, a state-component-wise summation in
each row of Rf is equal to the corresponding element in
the same row of−Rℓ (due to the definition of the rigidity

matrix R); i.e.,
∑Nf

i=1[Rf ]k,((i−1)d+j) = −[Rℓ]k,j ∀j ∈
{1, ..., d}, ∀k ∈ {1, ...,M}. Therefore, using (21)

with (20), we obtain R†
fRℓ = −R†

fRf (1Nf
⊗ Id) =

−S†
fSf (1Nf

⊗ Id) = S†
fSℓ. 2

Theorem 4.1 If Nℓ = 1 (i.e., single-leader case), the
rigid-link approximation of dynamics (8) is given by

ẋf (t) = −R†
fRℓẋℓ(t). (22)

PROOF. We here define the approximation described
in Definition 4.1 in a more formal way. Consider that
the velocity of leaders gives a small displacement,
δxℓ(t), of their state from time t to t + δt. Here,

ẋℓ(t) = limδt→0
δxℓ(t)

δt . Since we assume that the de-
sired distances are perfectly maintained by the follow-
ers, we introduce another time axis s and track the
state of followers, x̃f (t, s) ≜ xf (t) + δx̃f (t, s), to see
its convergence in s → ∞, where the leader’s state
x̃ℓ(t, s) ≜ xℓ(t) + δxℓ(t) is constant on the axis of s. We
can think of s describing the time evolution when the
system is executing the actual, as opposed to the approx-
imate, dynamics. Then, we consider the approximation

in Definition 4.1 as ẋf (t) = limδt→0 lims→∞
δx̃f (t,s)

δt .
We also assume that x̃f (t, 0) = xf (t) and that all the
desired distances are satisfied at s = 0.

Since the actual dynamics of the followers is given by
(8), the system equation of δx̃f (t, s) becomes

d

ds
δx̃f (t, s) =

d

ds
x̃f (t, s) = −∂E(x̃f (t, s), x̃ℓ(t, s))

∂xf

T

=− ∂E(xf (t) + δx̃f (t, s), xℓ(t) + δxℓ(t))

∂xf

T

=− ∂2E(xf (t), xℓ(t))

∂x2
f

δx̃f (t, s)−
∂2E(xf (t), xℓ(t))

∂xf∂xℓ
δxℓ(t),

where we assumed that δxℓ(t) and δx̃f (t, s) are small
enough to use the first-order approximation. We also

used
∂E(xf (t),xℓ(t))

∂xf
= 0. Note that

∂2E(xf (t),xℓ(t))

∂x2
f

and

∂2E(xf (t),xℓ(t))
∂xf∂xℓ

are constant on the time axis of s.
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Using Lemma 4.3, we can rewrite the above system as

d

ds
δx̃f (t, s) = −(ST

f Sf )δx̃f (t, s)− (ST
f Sℓ)δxℓ(t). (23)

Recall that the initial condition is δx̃f (t, 0) = 0 and
δxℓ(t) is constant on the axis s. Therefore, using
Lemma 4.2, we know that (23) converges and its con-
vergence point is given by

δxf (t) ≜ lim
s→∞

δx̃f (t, s) = −S†
fSℓδxℓ(t). (24)

Here, δxf (t) gives the displacement of the followers
caused by the displacement δxℓ(t). Thus, dividing (24)
by δt and taking δt → 0, we obtain

ẋf (t) = −S†
fSℓẋℓ(t). (25)

Finally, if Nℓ = 1, (25) and Lemma 4.4 yield (22). 2

Regarding Nℓ > 1 cases, it can be shown that (22) also
holds if the motion of leaders is constrained not to violate
the rigid-link approximation (see [13] for details). Note
also that (22) does not depend on a specific choice of
function eij in (4).

4.2 Manipulability with the Rigid-Link Approximation

As a corollary to Theorem 4.1, the manipulability (10)
of leader-follower networks under the rigid-link approxi-
mation of the follower dynamics is given by the Rayleigh
quotient

m̂(x,E, ẋℓ) =
ẋT
ℓ J

TQfJẋℓ

ẋT
ℓ Qℓẋℓ

, (26)

which we refer to as the approximate manipulability,

where J(x,E) ≜ −R†
fRℓ. Hence, similar to the ma-

nipulability indices in robot-arm manipulators, the
maximum/minimum values of the manipulability in-
dex can be obtained through spectral analysis. That is,
m̂max(≜ maxxℓ

m̂) is the maximum eigenvalue λmax of
the generalized eigenvalue problem JTQfJv = λQℓv,

and ẋℓ,max(≜ argmaxxℓ
m̂) is obtained from its corre-

sponding eigenvector vmax as ẋℓ,max = αvmax (α ̸= 0).

Similarly, m̂min(≜ minxℓ
m̂) and its corresponding in-

puts are obtained as the minimum eigenvalue λmin and
from its corresponding eigenvector, respectively.

Note that this analysis determines only an effective
“axis” of inputs. To find an effective direction includ-
ing the sign of α, additional analysis on the temporal
change of m̂max will be required.

The following proposition shows the range of m̂ under a
typical choice of Nℓ, Qf , and Qℓ.

Proposition 4.1 Suppose Nℓ = 1, Qf = INfd, and
Qℓ = Id. The approximate manipulability m̂ takes

0 ≤ m̂ ≤ Nf .

PROOF. Since JTJ ⪰ 0, 0 ≤ λmin(J
TJ) ≤ m̂ ≤

λmax(J
TJ) holds.Meanwhile, λmax(J

TJ) = λmax((1
T
Nf

⊗
Id)(R

†
fRf )

2(1Nf
⊗Id)) ≤ λmax((1

T
Nf

⊗Id)(1Nf
⊗Id)) =

λmax(NfId) = Nf since R†
fRf is a projection matrix.

Hence, the proposition follows. 2

It should be pointed out that the approximate manipu-
lability can also be interpreted in terms of the measure
of how much the motion of the followers’ centroid coin-
cides with the leader’s motion:

Proposition 4.2 Suppose Nℓ = 1 and Qf = INfd. Let

x̄f = 1
Nf

(1T
Nf

⊗ Id)xf be the centroid of the follower

agents. Then, we have 1
Nf

m̂ = ẋT
ℓ
˙̄xf/(ẋ

T
ℓ Qℓẋℓ).

PROOF. Using the fact that (R†
fRf )

2 = R†
fRf , we

have JTJ = (1T
Nf

⊗ Id)(R
†
fRf )(1Nf

⊗ Id) = (1T
Nf

⊗
Id)J . Hence, ẋT

ℓ J
TJẋℓ = ẋT

ℓ (1
T
Nf

⊗ Id)Jẋℓ = ẋT
ℓ (1

T
Nf

⊗
Id)ẋf = Nf ẋ

T
ℓ
˙̄xf , and the proposition follows. 2

4.3 Leader-Side Manipulability Ellipsoids

Now, we introduce a tool to depict effective input direc-
tions (axes) in the case ofQℓ ∝ INℓd. Let us first consider

a robot-arm manipulability index defined by ṙT ṙ
θ̇T θ̇

, where

θ and r are the states of joint angles and the end-effector,
respectively. Given a kinematic relation r = f(θ), the

relation between ṙ and θ̇ becomes ṙ = ∂f
∂θ θ̇. Then, by us-

ing Jacobian ∂f
∂θ , the manipulability ellipsoid [27] can be

defined as ṙT (∂f∂θ
∂f
∂θ

T
)†ṙ = 1, which depicts the range of

end-effector velocities under a given input θ̇ with norm
||θ̇|| ≤ 1.

In contrast, since our interest is in the effective direction
(axis) of inputs, we define a similar ellipsoid not in the
space of follower velocities but in the space of leader
velocities (see Fig. 2 for example):

ẋT
ℓ (J

TQfJ)
†ẋℓ = const., (27)

which we refer to as the leader-side manipulability ellip-
soid. Here, the longest axis of the ellipsoid is given by
the eigenvector that corresponds to the maximum eigen-
value of JTQfJ .
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Leader

The most effective axis 

The least effective axis 

Fig. 2. Leader-side ellipsoid in the input space (Nℓ = 1, d = 2
case). The most effective axis is given by the eigenvector vmax

that corresponds to the maximum eigenvalue λmax(J
TQfJ).

5 Examples

In the following examples, we first verify the approx-
imation of dynamics, and we then show how the de-
fined manipulability index can be used to analyze effec-
tiveness of leader inputs in simulation and with mobile
robots. Finally, we demonstrate the optimization of net-
work topologies. For simplicity, we consider single-leader
networks in R2 (i.e., d = 2), and we use Qf = I2Nf

and
Qℓ = I2Nℓ

for the weight matrices in (10). Note that,
here, xi corresponds to agent i’s two dimensional posi-
tion, and state x denotes a positional configuration of
the constituent agents.

5.1 Rigid-Link Approximation

In order to examine the approximation of the follower
dynamics shown in Theorem 4.1, we compared follower
trajectories generated by the original dynamics (8) and
the rigid-link approximated dynamics (22). The func-
tion in (5) with uniform weights cij = c was used for the
edge-tension energy of the follower dynamics (8), and
ẋℓ(t) = [0, α]T (α : const.) was used for the leader’s ve-
locity. All the desired distances, dij ∀{vi, vj} ∈ E, were
set to be 1. Since the scale of the control gain of followers
is dictated by c2 in (4) and (5), the validity of the rigid-
link approximation is determined by a parameter pair
(α, c); for example, if α is small and c is large enough, the
followers almost maintain the desired distances. Mean-
while, as shown in Fig. 3, the distances between con-
nected agents vary more when smaller c is given.

To verify this characteristics, 500 feasible formations
with N = 7 were generated randomly: Starting from
a node, each formation was generated by iteratively
adding a link (a new node and an edge with a random an-
gle to an existing node) and a triangle (a new node and
two edges to an existing edge). A randomly chosen node
was assigned as a leader in each formation. Then, for
each of 18 different pairs of (α, c), the errors between the
follower trajectories were calculated and averaged over
the formations (Fig. 4). Here, in each trial with a forma-
tion and a parameter set (α, c), the error was measured

by E(α, c) = 1
TαNf

∫ Tα

0
||x(o)

f (t;α, c) − x
(a)
f (t;α)||dt,
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Fig. 3. Example of the original dynamics (left, middle), given
by (8) with c = 1, 3, and the approximated dynamics (right),
given by (22). α = 1 was used for the leader’s velocity.
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Input alpha = 0.5
Input alpha = 1.0
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Fig. 4. Average error between original and approximated fol-
lower trajectories (error bars represent the standard devia-
tions). For each pair (α, c), the trajectory errors were aver-
aged over randomly generated 500 formations .

where x
(o)
f (t;α, c) and x

(a)
i (t;α) are trajectories gener-

ated by the original and the approximated dynamics,
respectively, where Tα = 5/α (i.e., the leader finally
moved [0, 5]T in every trial).

We observe that large c and smallα achieve smaller error.
However, in real situations with communication/sensing
time delays, high gains of followers may cause instability.
For example, in the formation in Fig. 3, chattering has
occurred when the delay exceeded around 0.45, 0.04, 0.01
for c = 1, 3, 5 (with any α ∈ {0.5, 1.0, 2.0}), respectively,
where we assumed a uniform delay for all agent pairs.
Hence, given large time delays, smaller α should be used
to obtain small approximation errors. Nevertheless, the
leader’s velocity in real applications has a certain appro-
priate range, and an approximation error therefore al-
ways exists. In Section 5.3, we will examine and interpret
the gap of approximation using actual mobile robots.

5.2 Approximate Manipulability

To see how the proposed index can capture the effective-
ness of leader inputs depending on agent configurations,
we first used a line graph with Nf = 6 and Nℓ = 1, and
compared two motions started from the same initial con-
figuration shown in Fig. 5 (a). The leader’s inputs were
given by constant velocities, ẋℓ = [cos(θ), sin(θ)]T with
θ = 0 and θ = π, and the approximated follower dynam-
ics (22) were used here to focus on examining the index
properties in ideal situations. The intermediate configu-
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(d) Temporal change of m̂ during two motions

Fig. 5. Comparison of the temporal change of the approxi-
mate manipulability m̂ when the leader moves toward two
opposite directions: θ = 0 and π.

ration at t = 2 are shown in Fig. 5 (b) and Fig. 5 (c).

Fig. 5 (d) shows the temporal change of the approximate
manipulability m̂ in each of the two motions. When the
leader moved toward right with θ = 0, the value of m̂
changed between around 0 and 2; meanwhile, when the
leader moved with θ = π, which stretched the network,
m̂ increased monotonically and it converged almost 6,
which is the maximum value of m̂ in this setting accord-
ing to Proposition 4.1. That is, in terms of the followers’
response to the leader’s injected input into this network,
the leader motion dragging the entire network is more
effective than the motion moving toward the centroid of
the agents. This fact can also be predicted by Proposi-
tion 4.2 as all the directions of the leader and the follow-
ers coincide if the network is in a straight-line formation.

As an example to see the change of the leader-sidemanip-
ulability ellipsoid depending on configurations, we used
the graph with N = 3 (Nf = 2 and Nℓ = 1) and |E| = 2,
where the leader moved with ẋℓ(t) = [1, 0]T . From the
ellipsoids depicted in Fig. 6 (a), we see that the horizon-
tal direction was effective in the first and last parts of
the motion, while the vertical direction was effective in
the middle (around t = 1).

5.3 Experiment with Mobile Robots

We conducted an experiment with mobile robots (Khep-
era III, K-TEAM) to see the characteristics of the ma-
nipulability index in real situations. Although our focus
in this paper is on single-integrator models, we here ex-
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1 (t = 0.0)
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1 (t = 3.0)

Fig. 6. Leader-side manipulability ellipsoids.

amined mobile robots with kinematics in order to dis-
cuss possible extensions of the proposed index.

Each of the robots has two wheels and therefore its kine-
matics need to be considered. Let xi ∈ R2 be the center
of robot (agent) i, and let ẋi = ui ∈ R2 be the control
input to the robot i. First, we approximate the kinemat-
ics of each robot as the unicycle model:

ẋi = vir1(θi), θ̇i = ωi, (28)

where r1(θi) = [cos(θi), sin(θi)]
T . To obtain the linear

velocity vi and angular velocity ωi from the control input
ui, we consider the near-identity diffeomorphism [22]. In
particular, we control the off-centered point

x′
i = xi + εr1(θi) (29)

with a small enough constant ε; that is, we use ẋ′
i =

ui instead of ẋi = ui. Substituting (28) into the time
derivative of (29) yields 4

vi = r1(θi)
Tui, ωi = (1/ε)r2(θi)

Tui,

where r2(θi) = [− sin(θi), cos(θi)]
T . Finally, the speeds

of left and right wheels are obtained as vl,i = vi −
(dw/2)ωi and vr,i = vi + (dw/2)ωi, respectively, where
dw is the distance between the two wheels.

As shown in Fig. 7, three robots were used for this exper-
iment, where one was assigned as a leader (i = 3) and the
remaining two were assigned as followers (i = 1, 2). A
motion capture system (VICON) was used to obtain the
position of each robot. 5 The scenario (i.e., initial posi-
tions, topology, and the leader’s motion) was similar to
the last example (Fig. 6). Regarding leader’s input uℓ =
u3, the leader robot moved toward one direction from

4 Each follower does not need θi in the implementation, since
the control input can be given in each local coordinate.
5 While a decentralized control can be achieved with the
robots’ local sensors, we used a motion capture system, which
is considered to be more reliable than the local sensors, since
our focus is to examine the features of the proposed index.
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(j) t=30
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Leader Followers

Fig. 7. The motion of mobile robots during the experiments: A leader robot starts to move toward the center between two
follower robots (a). The follower robots are changing their headings and moving toward outside to maintain the desired
distances from the leader ((b) to (d)). Once the leader passed between the followers, the followers change their headings again
((e) to (f)) and follow the leader to keep the desired distances ((g) to (j)).
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Fig. 8. Comparison of the manipulability indices. Two in-
dices, m1 and m2, are used for the original manipulability to
see the effects of the approximation of individual kinematics.

the initial position with a constant velocity (9.5cm/s) as
shown in Fig. 7. The desired distance between the leader
and each of the followers was set to 80cm, and was al-
most satisfied in the initial positions. The parameter ε
in (29) was chosen to be ε = dw/2, where dw = 8.85cm.
The weight in (5) was set to cij = 0.6 for both edges
by taking into account the scale of the relative positions
and the maximum speed of the robots.

Fig. 8 shows the comparison of the following three indices
during the scenario of Fig. 7:

m1 =
uT
f uf

ẋT
ℓ ẋℓ

, m2 =
ẋT
f ẋf

ẋT
ℓ ẋℓ

, m̂ =
ẋℓJ(x)

TJ(x)ẋℓ

ẋT
ℓ ẋℓ

,

where x(t) = [xf (t)
T , xℓ(t)

T ]T with xf = [xT
1 , x

T
2 ]

T and
xℓ = x3 is the measured positions of the robots, and

uf (t) = [u1(t)
T , u2(t)

T ]T = −∂E(x)
∂xf

T
is the control input

to the followers.We here used two indices,m1 andm2, for
the original manipulability since ẋi = ui is not perfectly
satisfied for each robot due to (28) and (29).

As is the case in Fig. 6, the index m̂ once had a small
value in the middle (around t = 10) because the robots
lined perpendicular to themoving direction of the leader.
The difference betweenm1 (solid) and m̂ (dotted) is due
to the rigid-link approximation. Note that this difference
can be considered as a preferable property of the index
m̂ rather than the approximation error. That is, in the
rigid-link approximation (Definition 4.1), we assume the

convergence of the followers in every time point. There-
fore, the approximate manipulability m̂ essentially per-
forms a short-term prediction of the input influence. In
fact, m̂ at t = 0 had a large value because of the pre-
dicted effect of the leader’s input while the original ma-
nipulability m1 was almost zero.

On the other hand, the difference between m1 (solid)
and m2 (dashed) was mainly caused by the approxima-
tion with (28) and (29). In particular, the major dis-
crepancies around t = 4 and around t = 15 are due
to the kinematics of the unicycle model (28), since the
followers were changing their heading directions signifi-
cantly in these periods. While this paper assumes single-
integrator models in the theoretical contributions, the
extension of the approximate manipulability to a variety
of robot/agent models should be addressed in future.

5.4 Optimization of Network Topologies

To demonstrate how the notion of manipulability can
be used to find effective topologies, we first compared
the values of the approximate manipulability in different
topologies with different input directions. In fact, we
considered four formations, Fi = (x,Gi) (i = 1, ..., 4),
shown in Fig. 9, where the agent configurations, x, were
identical. Two input directions ẋℓ = [ϵ, ϵ]T and ẋℓ =
[ϵ,−ϵ]T were used. Here, ϵ > 0 can be arbitrary since
the scale of inputs is normalized in the index m̂. Table 1
shows the values of approximate manipulability m̂ for
each formation and input direction.

For the leader’s motion ẋℓ = [ϵ, ϵ]T , the values of in-
dex m̂ in formation F3 and F4 took almost the maxi-
mum, according to Proposition 4.1. Formation F1 also
provided a relatively high value despite of the smaller
number of edges (|E| = 3). This indicates that the ex-
istence of the diagonal edge from the leader was crucial
to pull the bottom-left agent toward the upper-right di-
rection. In the case ẋℓ = [ϵ,−ϵ]T , on the other hand, no
formation took a prominent value. This is because the
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Fig. 9. Formations with N = 4 (filled circle: leader).

Table 1
Comparison of the manipulability in different topologies.

Formation |E| m̂ (ẋℓ = [ϵ, ϵ]T ) m̂ (ẋℓ = [ϵ,−ϵ]T )

F1 3 2.0133 0.9867

F2 4 1.0522 1.0094

F3 4 2.9694 1.0170

F4 5 2.9870 1.0274

leader caused, roughly, a rotating motion of the network
around the bottom-left node. Therefore, the edges con-
necting the leader and other two nodes had a large effect,
which were shared by all the four formations.

We then optimized the topologies using the approxi-
mate manipulability index given the maximum num-
ber of edges (i.e., a limitted communication capacity).
Since our focus is on how the proposed index can be ap-
plied to find effective network topologies, we used the
brute-force search with N = 5 and N = 6 to find the
global optimum instead of using an approximate search
algorithm. The given agent configurations are shown in
Fig. 10 (left). Two input directions were given to find
the optimal topology in Fig. 10 (middle). As for the op-
timization problem, we solved (13) by using m̂ instead of
the original manipulability m, where we used Mlim = N
for the upper limit of the number of edges.

The effectiveness of the optimized topology was demon-
strated by the short-term response of the network in
Fig. 10 (right). We see that the topologies were selected
appropriately to enhance the effect of given inputs. Fu-
ture work includes finding an effective, adaptive graph
process and algorithms for selecting optimal network
topologies when given inputs change continuously.

6 Conclusions

In this paper, we introduced the notion of manipulabil-
ity in leader-follower networks in order to measure the
instantaneous influence of leaders’ inputs to followers’
response in terms of how inputs through the leaders have
impacts on the response of followers. The rigid-link ap-
proximation of the network dynamics enables us to find
the instantaneous relation between the velocities of lead-
ers and followers, which is crucial to define the approxi-
mate manipulability index in a form of the Rayleigh quo-
tient. We have shown, in simulation and with real mobile
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-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Optimized

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(t = 2.0)

(c) N = 6, ẋℓ = (0.1, 0.1)T , m̂ = 3.693
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Fig. 10. Given agent positions and input directions (left),
optimized topology (middle), and the short-term response of
the network (right), where c = 3was used to see the response.

robots, that the proposed index successfully captures the
effectiveness of leader inputs depending on agent con-
figurations, network topologies, and directions of inputs
to the network, and demonstrated an application to find
effective network topologies.
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A Proof of Lemma 4.3 (the Hessian of Edge-
Tension Energy E)

Let {vi, vj} ∈ E. The second derivative of Eij(xi, xj) in
(4) with respect to xi in a general configuration of xi and
xj (i.e., without assuming ||xi − xj || = dij) becomes

∂2Eij(xi, xj)

∂x2
i

(
= −∂2Eij(xi, xj)

∂xi∂xj

)
=

w′
ij(||xi − xj ||)
||xi − xj ||

(xi − xj)(xi − xj)
T + wij(||xi − xj ||)Id,

where the equality in the bracket follows from the fact

that
∂Eij

∂xi
is a function of xi − xj . Let e

′′
ij(z) ≜ d2eij(z)

dz2

with z > 0,

w′
ij(z) =

dwij

dz
=

(
e′ij(z)

2 + eij(z)e
′′
ij(z)

)
z − eij(z)e

′
ij(z)

z2
.

If ||xi − xj || = dij , then eij(dij) = 0, wij(dij) = 0, and

w′
ij(dij) =

e′ij(dij)
2

dij
. Hence,

∂2Eij
∂x2

i

= − ∂2Eij
∂xi∂xj

=

(
e′ij(dij)

dij

)2

(xi − xj)(xi − xj)
T .

The matrices ∂2E
∂x2

f

and ∂2E
∂xf∂xℓ

consist of Nf ×Nf blocks

and Nf × Nℓ blocks, respectively, where each block is
d× d matrix. Specifically,[
(i, j) block of

∂2E
∂x2

f

]
=


∑

k∈N (fi)

∂2Efik

∂x2
fi

(i = j)

∂2Efifj

∂xfi
∂xfj

= −∂2Efifj

∂x2
fi

(i ̸= j)[
(i, j) block of

∂2E
∂xf∂xℓ

]
=

∂2Efiℓj
∂xfi∂xℓj

= −
∂2Efiℓj
∂x2

fi

,
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where we used fi ≜ f(i) (i = 1, ..., Nf ) and

ℓi ≜ ℓ(i) (i = 1, ..., Nℓ) to simplify the notations.
Noting that the neighbor set N (fi) can include
leader agents, from the above equations we obtain
∂2E
∂x2

∣∣∣
x=x∗

= RT (W ′)2R, ∂2E
∂x2

f

∣∣∣
x=x∗

= RT
f (W

′)2Rf , and

∂2E
∂xf∂xℓ

∣∣∣
x=x∗

= RT
f (W

′)2Rℓ, where recall that all the

desired distances are satisfied at x = x∗. 2
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