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Abstract

A variety of methods for audio-visual integration, which inte-
grate audio and visual information at the level of either features,
states, or classifier outputs, have been proposed for the purpose
of robust speech recognition. However, these methods do not al-
ways fully utilize auditory information when the signal-to-noise
ratio becomes low. In this paper, we propose a novel approach
to estimate speech signal in noise environments. The key idea
behind this approach is to exploit clean speech candidates gen-
erated by usingtiming structuresbetween mouth movements
and sound signals. We first extract a pair of feature sequences
of media signals and segment each sequence into temporal inter-
vals. Then, we construct a cross-media timing-structure model
of human speech by learning the temporal relations of overlap-
ping intervals. Based on the learned model, we generate clean
speech candidates from the observed mouth movements.
Index Terms: multimodal, non-stationary noise, timing, linear
dynamical system, particle filtering

1. Introduction
In order to address the increasing demand for robust speech
recognition under noise environments, a variety of audio-visual
speech recognition (AVSR) methods that utilize visual informa-
tion have been introduced. These methods first extract features
from mouth movements and speech signals. Then, they inte-
grate the features at one of several levels. Early integration,
which concatenates multimedia features as the input of a clas-
sifier, and late integration, which merges the results from two
independent classifiers of visual and audio signals, are stan-
dard techniques for the integration [1] (Fig. 1(a)). State-level
integration methods, such as coupled hidden Markov models
(CHMMs) [2], represent the cooccurrence between two media
signals as a dynamic Bayesian framework.

Speech input for AVSR applications is, however, usually af-
fected by a certain level of noise, and because most of AVSR
approaches treat both audio and visual media signals on an
equal basis, they do not always fully utilize auditory informa-
tion when the signal-to-noise ratio (SNR) becomes low. For
example, CHMMs are often used with the relative reliability
of audio and video features, and the weight of audio streams
is decreased with the increase of noise ratio. As a result, the
recognition performance often relies on only visual information
when the noise is nonnegligible.

In this paper, we present a novel method to directly retrieve
clean speech features by exploiting visual features. As shown in
Fig. 1(b), we first generate multiple speech candidates from cap-
tured mouth movements, and then evaluate the consistency of
the candidates using simultaneously captured audio signals. Fi-
nally, the clean speech signal estimated from using this method
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Figure 1: Existing and proposed frameworks

can be used as the input for subsequent ASR or AVSR classi-
fiers. This study focuses on the steps for the estimation of clean
speech signals in this framework.

In direct estimation methods such as that presented in this
paper, it is necessary to have methods for generating precise
speech signals from visual features. In particular, we need to
carry out the following issues.

1. Reduce the number of generated candidates because one
mouth movement usually corresponds to several sounds.

2. Generate continual and smooth speech signals; this is
required to check the consistency of the candidate se-
quence with the input audio signal.

3. Manage the temporal differences between the mouth
movements and speech sounds because they are some-
times synchronized loosely.

To satisfy these requirements, we use a hybrid dynamical sys-
tem (HDS) as a model for each audio and visual signal. HDSs
are integrated models of discrete-event systems (e.g., HMMs)
and dynamical systems. There are various types of HDSs; how-
ever, in this study we use an extended version of the segmen-
tal models [3], in which each segment is modeled by a linear
dynamical system (LDS). Once we represent the temporal dy-
namics of each media feature as the switching between multi-
ple LSDs, the temporal relation and cooccurrence of multime-
dia feature sequences can be extracted as the temporal differ-
ences between those switching time points of the constituent
LDSs [4]. We build a simple statistical model to represent the
temporal relations, which we refer to as thecross-media timing
structure model[4].



Because HDSs can be trained from input signals in a
bottom-up manner, systems can automatically find appropriate
sets of motion or sound elements from input media signals, in
which each elements is represented by an LDS. Thus, each HDS
successfully partitions an input signal (or a feature sequence)
into a symbolic sequence with the labels of constituent LDSs;
as a consequence, it reduces the calculation cost in the candi-
date generation step, as required in the previously mentioned
requirement 1. Moreover, with regard to requirement 2, HDS
can generate a smooth temporal sequence; and with regard to
requirement 3, the trained timing structure model can success-
fully take the systematic temporal gaps and fluctuation between
two media signals into account.

1.1. Problem Setting

In this paper, we assume the following specific situation; these
can be applicable to, for example, driving environments.

• Use of a single camera and microphones

• No occlusions of the mouth regions in captured images

• Speech affected by non-stationary additive noise

• Availability of users dependent speech data for learning

While these assumptions can be easily extended by using exist-
ing techniques of microphone arrays, spectral analysis, and so
on, we concentrate on this simple configuration to evaluate the
basic properties of our proposed method.

Assuming that a reliable visual feature sequenceV is avail-
able, we generate candidates of clean speech feature sequences
Ŝ(c) (c = 1, ..., C) from V ; then, we evaluate the consistency
of the candidate sequences with input audio signalX affected
by additive noiseN ; and finally, we estimate a clean speech
feature sequenceS. The overall flow of the proposed method
consists of three phases: learning, candidate generation, and
noise compensation.

2. Candidate generation based on HDSs
Figure 2 shows an overview of the learning and candidate gen-
eration phases. In the learning phase, we extract feature se-
quences of speech signals and mouth movements under a low-
noise environment. We train two HDS models from each of the
speech and video feature sequences. In the following, we use
HDS s and HDSv to denote the trained HDSs from speech and
visual features, respectively. Then, we train a timing structure
model between those features based on the method proposed
in [4]. As a result of training of HDSs, the captured multi-
media signals are partitioned and represented by pairs of inter-
val sequences. LetI(s)
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The first distribution represents the cooccurrence of LDSs, and
the second distribution represents the possible degree of tempo-
ral gaps between two LDSs. We refer to the set of these distri-
butions as the timing structure model and useΦ to represent all
the model parameters.
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Figure 2: Flow for generating clean speech candidates

In the candidate generation phase, we first extract fea-
ture sequences from novel audio and visual input. LetV =
[v1, . . . ,vTv ] be a captured visual feature sequence. We gener-
ate candidates of clean speech sequencesŜc = [ŝ

(c)
1 , . . . , ŝ

(c)
Ts

]
from V . This generation technique is almost similar to the
method described in [4] except that the generated sequences
are multiple and the modality is inverted; that is, the original
method generates a lip motion sequence from a given input au-
dio signal.

The following are the steps for generating a single candi-
date:

1. Partition the input sequenceV into an interval sequence
I(v) = {I(v)

1 , ..., I
(v)
Kv

} by using the trained HDSv.

2. Generate an interval sequenceI(s) = {I(s)
1 , ..., I

(s)
Ks

}
from I(v) based on the trained timing structure model.

3. Generate a speech feature sequence candidateŜ from
the generated interval sequenceI(s) by using the trained
HDS s.

Because HDSs are generative models, steps 1 and 3 are
performed using standard techniques, such as those described
in [4]. Step 2 is the key step in candidate generation. In the
original method, the Viterbi algorithm was used to solve the op-
timization problem:

Î(s) = arg max
I(s)

P (I(s)|I(v), Φ). (3)

From the trained timing structure model with parametersΦ, a
single interval sequenceI(s) can be estimated from the given
I(v). However, because one mouth movement corresponds to
several speech sounds, we utilize the parallel list Viterbi algo-
rithm [5] to find multiple interval sequences. Finally, we gener-
ate multiple candidates of speech feature sequences by switch-
ing corresponding LDSs in the HDSs based on each of the gen-
erated interval sequences during step 3.

3. Noise compensation using particle filters
In the noise compensation phase, we estimate a clean speech
signal by using the generated candidatesŜc discussed in the
previous section together with the observed input audioX. We
apply a method that uses a particle filtering technique to trace
non-stationary noise signals [6]. Letxt, st, andnt be loga-
rithmic mel-spectrum features of observed audio, clean speech,
and noise signals, respectively. Then, this method assumes that



non-stationary noise is modeled by a random walk process:

nt+1 = nt + ωt. (4)

The observation (i.e., audio signal) is acquired by the sum of
(unobservable) noise and clean speech signals:

xt = log(exp(st) + exp(nt)) + υt

= st + log(1 + exp(nt − st)) + υt

= f(st,nt) + υt, (5)

whereυt is a model error component (e.g., reverberation) with
Gaussian distributionN (0, Σx), Σs is a covariance matrix of
st, 1 is a vector filled by 1, andf(st,nt) is defined as

f(st,nt) , st + log(1 + exp(nt − st)).

The equations (4) and (5) constitute a non-linear state-space
model, and the noise can be inferred by particle filtering tech-
niques [6, 7]. Finally, we can estimate clean speech based on a
minimum mean square error (MMSE)-based method [8]:

ŝt = xt −
Ls∑
l=1

P (l|xt)(f(µs,l,nt) − µs,l),

P (l|xt) =
ws,lN (xt;µx,l, Σx,l)∑Ls

m=1 ws,mN (xt;µx,m, Σx,m)
,

whereµx,l is the mean vector andΣx,l is the covariance matrix
of observation model (5), which can be approximately calcu-
lated by using the vector Taylor series method [9].

The nonlinear observation model shown in equation (5) has
a clean speechst as the input component. Because the input
needs to be determined on the basis of prior knowledge of clean
speech, this component is sampled from the following Gaussian
mixture model (GMM) in the original method [6]:

p(st) =

Ls∑
l=1

ws,lN (µs,l, Σs,l), (6)

whereLs is the number of Gaussians andws,l are the weights
for each of the constituent Gaussians.

However, when this type of a static GMM is used, the noise
tracking often fails under low SNR environment when the de-
gree of noise is large. The key principle in our proposed method
is to use the dynamically changing GMM, shown in the follow-
ing equation, by exploiting the speech candidatesŜc generated
from the input visual feature sequenceV .

p(st|V ) =

C∑
c=1

Wc N (ŝ
(c)
t , Σsc), (7)

where the weightWc can be determined by using the likelihood
calculated in the parallel list Viterbi algorithm during the opti-
mization in equation (3).

4. Experiments
We evaluated the basic capabilities of our proposed method by
using speech data obtained from a male subject. Five speech
sequences, each of which comprises isolated sounds of the five
vowels /a//i//u//e//o/, were captured together with the speaker’s
facial images. The resolution and frame rate of the images were
640× 480 and 60 fps, respectively. Figure 3(a) shows an ex-
ample of a captured image. The quantization size and sampling
rate of audio data were 16 bit and 48 kHz, respectively, which
was downsampled to 16 kHz afterwards.

(a) Captured image (b) Tracked feature points (c) Mouth region image
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Figure 3: (a) Example of a captured image，(b) extracted fea-
ture points by AAM, (c) extracted mouth region.

4.1. Visual and speech feature extraction

Visual features are required to describe the difference between
phonemes as much as possible, and thus, the shapes around
the lips are inadequate for providing such visual information.
Therefore, we use appearance-based features around the mouth.
We tracked facial feature points by using the active appearance
model (AAM) [10] (Fig 3(b)), cropped the mouth region by es-
timating the center of the lip shapes, and normalized the size
of the mouth region. Then the region was downsampled to a
resolution of 32× 32, and the peripherals of each image were
smoothly masked (Fig 3(c)). Principal component analysis was
applied, and the top 20 principal components were used in a
visual feature vector.

We used the HMM Tool Kit (HTK) to extract filter bank
coefficients (FBANK) as speech features for speech candidates
and during the noise compensation algorithm. We also extracted
line spectrum pairs (LSPs) [11] as supplemental features during
the training steps of HDSa because LSPs have shown to be ad-
vantageous for representing smooth temporal sequences. The
window size and step size used in the short-term spectrum anal-
ysis was about 25 ms and 16.7 ms, respectively, which was syn-
chronized with the frame rate of visual features to simplify the
implementation. The length of each sequence was 300 frames.

4.2. Generation of speech candidates

Two HDSs were trained from the extracted sequences via the
learning algorithm proposed in [12], and the numbers of LDSs
in HDS v and HDSs were manually determined to be 8 and 10,
respectively, by examining the modeling error curves. The used
LDSs were second-order vector autoregressive models.

A timing structure model was trained from the pairs of in-
terval sequences obtained in the training step of HDSs. First,
every overlapping interval pair was extracted to calculate a
probability table in equation (1). Then, the samples of temporal
differences between their beginning points and between the end
points (i.e.,(b(s)

k −b
(v)

k′ , e
(s)
k −e

(v)

k′ )) were extracted, convolved
with a Gaussian kernel (standard deviation was 3 frames), and
accumulated onto two dimensional spaces to obtain temporal
difference distributions in equation (2).

From a visual feature sequence consisting of the five vow-
els, we generated 50 speech sequences candidates by using the
method described in section 2, and ranked the candidates on the
basis of the likelihood obtained from the parallel list Viterbi al-
gorithm. Figure 4 shows the 1st and the 26 th candidates. We
see that the 1st candidate is more similar to the original clean
speech (top) than the 26 th candidate.

4.3. Noise compensation using average candidates

We performed the noise compensation (clean speech estima-
tion) method described in section 3 based on the leave-one-
out cross validation on the five captured sequences used in
the previous subsection. For each of the five tests, a pair of
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Figure 4: Example of a generated FBANK sequence from a vi-
sual feature vector. (Top) clean speech (ground truth), (middle)
generated candidate whose likelihood is the highest, (bottom)
generated candidate whose likelihood is 26 th.
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Figure 5: Error norms between original and estimated speech
feature sequences via six levels of SNRs.

HDSs was trained from four pairs of clean speech and visual
feature sequences. Then, the remaining pair of feature se-
quences were used as test data. The audio test sequences were
prepared by adding non-stationary noise obtained from JEITA
noise database [13]. The added noise captured in a factory in-
cluded the sound of several industrial machines such as an air
wrench, and had strong non-stationarity. We prepared speech
with six different SNRs:−18,−8, 2, 12, 22, and32 dB; and
we then extracted speech features as the observation sequences
X = {xt} of equation (5). The GMM parameters were trained
by HTK from clean speech data. The number of Gaussians used
in the speech GMM was 13.

We compared our proposed method with two existing meth-
ods: spectral subtraction (specsub in VOICEBOX [14]) and
particle filtering with static GMM in equation (6). To exam-
ine the basic properties of the proposed method, we used an
average of 50 candidates and constructed a single time-varying
Gaussian distribution for the model shown in equation (7). The
number of particles used was 50, and the covariance matrices
areΣω = diag(0.01) andΣsc = diag(1.0). Figure 5 shows
the error norms between the original clean speech and the esti-
mated speech signals. To reduce the effect of random sampling,
we iterated the particle filtering process three times. Therefore,
each error norm of particle filtering methods in the figure was
calculated as the average of 15 error norms (5 test data× 3 it-
eration). We see that the estimated speech feature sequences
are much closer to the original sequences compared to existing
method, even when the SNR is closer to 0 dB.

5. Conclusions
In this paper, we have proposed a novel speech estimation
method that directly estimates feature sequences of clean speech

from observed mouth movements. Candidate generation is re-
alized by using hybrid dynamical systems (HDSs) and a timing
structure model between the HDSs. While the evaluation pre-
sented in this paper is limited, it shows that the proposed method
can estimate clean speech with much higher precision under
non-stationary noise environments as compared to the methods
that use only audio data. Our future work will involve a com-
parative evaluation of our method with existing AVSR methods
by using a large speech corpus as well as a detailed analysis of
the characteristics of the proposed method.
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