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Event Recognition

Real world

Sensor (ex. camera, microphone)

g Time-varying signals

Feature Extraction
(signal processing)

& QO

Dynamic Feature Sequence of Static or uynamlc Feature

AW
° T R W

State-Transition Model
(ex. HMM, Dynamical System,
Automaton)

Static Pattern Recognition Trajectory Matching
(ex. Nearest Neighbor) (ex. DP matching method)
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Two Concepts of Time

Time flies
faster than it
used to...
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Subjective time (Kairos)

Time has no metric: (N, < Q: state set, E: input event set
/ Discrete-Event Systems A
Event sequence
S; . Countable se Finite set A M( Statepq,, ,input event) = State, gy
A = {up, down} \_ M:QxA->Q )
¥ up—~>down->up->down --- Automata, Petri nets
0 1 2 3 s (Turing machine 1936)
Order of discrete events
Objective (Physical) time (Chronos)
Time has metric : (R, =, dist) R": state space
Signal data / N Dynamical Systems
: K tate(t
y(t) . Real num®—> space R d State( )— F(State(t))
/N dt F:R"— Rn
S \/\/ Control systems, Neural networks
Continuous change (Cybernetics 1947)
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Advantages and Disadvantages

i

/' Recognizable
L. Concepts

/' Real World
. Signals

g Discrete-Event Systems

? Signal-to-symbol problems
? Determination of states and
events

Memory based state spa

Turing Machine
Mode Switching

Subj

Ce ubjective | 1) ong-term context
bﬂme Discrete structure
Time as ordinal state

transition

Metric state space

Differential Equation ~~
! — N

Attractor

—
~

' h
Objective Continuous change

time

Time as physical
metric entity

Physical Phenomena |

Dynamical Systems

? Complex structures




Symbol
Grounding
Realization
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Hybrid Dynamical Systems

Abstraction
Concepts Recognition

f

Long-term context

Turing Machine .
g Discrete structure

Memory based state space Subjective
i Time

\
-

\

e’ te
N
¢ee® ¢ o

Mode Switchin
g Time as ordinal state
transition

Metric state space Objectiv

| | | . Continuous change
Differential Equation — \:\ time Physical Phenomena

—>
Attractor — Time as physical
s metric entity

{ Observation Robot Gesture Speech Sound  Image Video}

Real World
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Existing Studies

Computer vision
— Hybrid dynamical models [C. Bregrler 1997]
— Multi-class condensation [B. North, A. Blake, M. Isard and J. Rittscher, 2000]
— Switching linear dynamical systems [K.P. Murphy 1998, V. Pavlovic 1999]

Speech recognition
— Segment models [M. Ostendorf 1996]

Computer graphics
— Motion textures [Y. Li, T. Wang, H.Y. Shum 2002]

Neural networks, Control theory, etc.
— Piecewise linear models [R. Batruni 1991]
— Switching space models [Z. Ghahramani 1996]
— Piecewise affine maps [L. Breiman 1993]

— Hybridautomata [R. Alur 1993]

Integration of “subjective time” and “objective time”?




2007.2.7

Dynamic Structures of Events

Sequential structures

Constituted bymultiple objects . leg

right leg

Observed as different media signals

g’\ motion : ‘ “ !
= audio Led i i

oo WEE 0 BN

]
«__on_c_ s .- off ‘.___on____off

_" <_ timing

v

®a
"

How to represent “a sense of time” of human?
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emporal Intervals

Subjective Time overlaps meets before
....... Discrete events .. (ordinal structure) B EE
finishes  during started by
: T : -
after met by  overlapped by
D namics A — EEE B —
equals starts contains finished by
L Dinam|cs B | I | E
? : : Interval : a temporal range represented

by a dynamical system

N X A

Objective (Physical) Time



Orchestration of Dynamics

D namics A

Dynamics A

s ( Dynamics B

/, .

J Dynamics C
S
1
\

\

\

\\

Dynamics D
A*
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Unobservablei‘
( Observable
Multimedia D W

Signal :
N N .
vy \)/

v
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Interval-Based Hybrid Dynamical System

represents complex temporal structures with physical-time grounding

1. Interval-based state transition
- to model rhythm and tempo of a single signal patterns
2. Timing structure model
- to model timing structure in multiple signal patterns
3. Clustering of dynamical systems
- to find a set of dynamics Dynamical system’

close )
3 /-“\‘ : remai
T SRS S "_closed

Dynamical 5 ical svsterms3
ynamical sys emJ

soein T WNEET, T

(lip motion) open close closed: bpen tlose . N\
Dynamical
i P system?’
socls N W o
(audio) o il - off
on off :: on:: off

Dynamical systema




Single-Media Signal

Multimedia Signal

Overview of the Thesis

Modeling Single-Channel Signals
(Segmentation, Tempo, Rhythm)

Modeling Single-Part Events in Signel Modality

' ™
Chapter 2
Architecture and the Inference Algorithm of
an Interval-Based Hybrid Dynamical System

A "

, ¥ \

Chapter 3
Learning Algorithm of
an Interval-Based Hybrid Dynamical System

Modeling Multi-Channel Signals
(Timing Structure )

A vy

\ 4

Chapter 4
Analysis of Multipart Events in Single Modality
Based on Interval-Based Hybrid Dynamical Systems

partsVL—} time —pi g—

left eye

moun | ||
nsuml :EI;) smiling > smiling H

Chapter 5

Modeling Multimodal Events
Based on Interval-Based Hybrid Dynamical Systems

Microphone
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Chapter 2

Interval-Based Hybrid Dynamical System
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Interval-Based Hybrid Dynamlcal System

D e e

g Finite state automaton <q2 12> | <q1, t1>)
i RN iscrete state l Interval-based transition
i gyg,z rrr:csz Dynamical
| ’ D2 P(|k—< q;, 7> lk-1=<q;,7, >)

P(<q1, t1>| <q2, 12>)

Intervals
Internal :
' state space I @
| 1
\ <@,z >
_________________________________________________ ’ duration
Intervel sequence , time \

Linear dynamical systems

oooooooooooooooooo

<qi, 3> <qZ, 4> <qi, 2>

State transition
N ) (i)
X, =F"X_ +09" +Ww,

L W: — Obsewaﬁlon
Internal state sequence _ K yt = Xt +Vt /

- Observation H

Signal generation

(1)
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Linear Dynamical Systems

 |nternal state xecR"

» State transition « (Observation
transition matrix observation matrix

_ (1) (1) _
X _t—l + g. + W, _ yt _@Xt T Vt _ _
bias process noise observation noise

( wy, v, ~ Gaussian)

« Parameters: { F, g, H, noise covariance matrices, initial state}

« Generation of continuous change

generated

training data m‘ H

@




Interval-Based State
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ransition

* Modeling relation of duration lengths between adjacent intervals
— to represent tempo and rhythm
— to enhance robustness of segmentation (top-down constraints)

P( L,=<q;, 7> | [, ;=<q;, 1,>)

Interval sequence  --eoeee

P(l= T 1=Tp | $x=0;,Sk.1=0i)

Assume Gaussian distribution

= P( 8= | s¢.4=0i) P(l= 7| $,=0;,8.1=0i,lk.4=T))

cegreer

[y
)

<@
<

Y.

<qi7 Tp>

<q;, 7>

oooooooooooo

L1 (Sk.1=Q)
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Example of Interval Sequence Generation

 Randomly generated interval sequences using manually given distributions

Three discrete states length of state2 length of state3 length of state1
Correlation =0
length of length of length of
state1 state2 state3

Time "
Generated ¢
Sequence g r_- b_-d

length of state2 length of state3 length of state1
Correlation = 0.9
length of length of length of
state1 state2 state3

Time

Generated gt
Sequence ¢ &- — ! 5




Chapter 3

Learning Method for the Interval-Based Hybrid
Dynamical System



2007.2.7

Difficulty of the Parameter Estimation

Assume that only a set of vector sequences is given

eed to define a set of dynamics (primi
— Defined manually in existing work

* Need to solve paradoxical nature of parameter estimation
— Segmentation requires identified dynamical systems
— Identification of dynamical systems requires segmentation

eed to solve initialization problem
of the EM algorithm

closed _.open close

p
segmentation and labelin
E step : 5
\ based on current parameters
iteration a B
M Step uv\date the nararmatarg ]
C lJal aliivivio

remail )
x = F®x +Wt@./ closed

x, =F®x_ +w" /
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Overview of the Training

« Two-step learning method

training data set

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

typical data set "

Hierarchical Clustering | | The number of dynamical systems fix
of Dynamical Systems ‘| Parameters of dynamical systems

v

Initialization

Refinement process of parameters
via the EM algorithm

.| Parameters of dynamical systems fix
Parameters of an automaton
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Example of Two-Step Learning Method

Hierarchical Clustering time
feature vector sequence (PCA coef.)

v

input lip image:
/mamamama/

frame 11 30 == frame 35

remain closed open  remain open close

Training via the EM algorithm

/— Trained Hybrid system ———— initialized by a closed lip

i ==

remain closed \5‘

. remain ‘/
open
\_ /

genheration
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Hierarchical Clustering of Dynamical Systems

training data set

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

teeeenee l- ooooooooooo t ypical data Set ..-:

Hierarchical Clustering The number of dynamical systems
of Dynamical Systems ™| Parameters of dynamical systems

: Initialization
Refinement process of parameters

via the EM algorithm

Parameters of dynamical systems
Parameters of an automaton
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Constrained Linear System Identification

« State transition » Observation
transition matr(ix observation matrix
_ (1) ) _
X _t—l + g + W _ yt _@Xt + Vt _ _
bias process noise observation noise

(w,, v, ~ Gaussian)

generated

e
— =

Overfitting problem '~

No constraint s

System behavior is determined by transition matrix F

Need constraints on the transition matrix F
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Class of Linear Dynamical Systems

« Temporal evolution of the state
X, = F'X, =Cider+CciAs e+ + Cidyen

A

F — E/\E_1 :[e17"'9en] ‘°. [ely-.-,en]_l

IM|>1and [\2] < 1

e Sa
= T

IM| < 1and |A\2] < 1

\ \\ \\\ \\ AY
Wy
3§ \,

(ex.)n=2

A and A2 is
positive real

A and A2 is

— \\\:‘._..\ |
LR A
)

f//
complex num. 77

{1

b

b1y

ARG

i AN

A ——— S—— 7]
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Constrained Linear System Identification

Vv
: : [ O o f O]
« Eigenvalue constraints 11 i
. F — B AN |
— Upper bound of eigenvalues - \y 3
is determined by fi i gt

UpperBound = max )
" ocal

‘ =1 Deduced from
Gershgorin’s theorem

Xa Interval X,

 Estimation of transition matrix <
Least squares problem o S e
F(i)* . . || F(i)x (i) . X (1 12 1 o111l

= argmin 0 co i ]

T v OT v Oy T <21y v )y (DY (pseudo-inverse
= 1im X, "X, (X,"X," +87D)" = XX, ¢ )

Stop the limit before §*converges to 0
o2 controls the scale of matrix elements
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Algorithm of Hierarchical Clustering

Divide the training data into short intervals (Initialization)

|dentify the parameters of the dynamical systems from each interval
Calculate distances of all the dynamical system pairs

Merge the nearest pair of dynamical systems (intervals are also merged)
|dentify the new dynamical system from the merged intervals

Repeat 3to 5

Sl

Interval sequence

\ A\

7 L] [

merge the nearest dynamical system pair

/Distance between dynamical systems I
LDS i |Estimation | LSD j

Average of Kullback-Leibler divergences
< < \dentificalion P& ntification

\ Interval i Interval j )
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Simulation Result

 Input data: generated from three dynamical systems

time

merge iteration

T— _-__
8_-'—. __'—. _-'—.
-'—@ -_'—@ --_w

Prediction error of overall systems
at each iteration step

8 10 12 14 16
# of systems (N)

4
1o
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Refinement Process of All the Parameters

training data set

The number of dynamical systems
Parameters of dynamical systems

Refinement process of parameters

via the EM algorithm

Initialization

| Parameters of dynamical systems

‘| Parameters of an automaton
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Evaluation based on Simulated Data
 Interval-Based HDS with known parameters

Original system Q £ _ {06 —-0. 1}
F(z){os 00} -0.1 02
0.0 0.6 @ (3)_{05 01}

___ 0.1 0.3
Generation L Compare

Used for clustering (one sequésc
- Used for EM pla" ithm (10 sequences)

Trained system m
@ parameters

Estimated
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Simulation Result

« Comparison between given and estimated parameters

Original (ground truth)

co_[ 060 =010, [030 0.00] Lo | 050 0.10
~0.10  0.20 0.00 0.60 ~0.10 0.30

Estimated parameters via clustering

—0.01 021 —021 —0.06 |-0.11 0.75

L | [ —

Estimated parameters via EM algorithm
F(l)_{0.60 —0.10} F(z)_{osz 0.02} F(3){0.49 0.09}

12010 020 0.06 0.52 ~0.10 0.29
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Discussion

 Interval-based hybrid dynamical system
— Interval-based state transition to model tempo and rhythm
— Linear dynamics to model continuously changing patterns

« Two-step learning method for the interval-based
— Clustering of dynamical systems + EM algorithm
— Constrained system identification based on eigenvalues



Chapter 4

Analysis of Timing Structures in Multipart Motion
of Facial Expression
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Facial Expression as Communication Protocol

« Communication via facial expressions

— Generation
» Express internal state _ ™
Recognition Intentiona|
: (Social)

» Estimate internal state

>_ Expression

« Acquisition of expressions Spontaneous

— Intrinsic (Emotional) —
* Smile, cry, surprise

— Learned from experience (parents)
» Social contexts

Facial expression = Emotional category

——

Facial expression = Communication protocol
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Related work

 FACS (Facial Action Coding System) (Ekman, et al.)

— AU (Action Unit) : motion primitives in faces
— Describe facial expressions based on combination of AU

(ex.) Surprise = AU1+2+5+26
— Describes only emotional categories
» {happiness, surprise, fear, anger, disgust, sadness}

Problem: cannot describe dynamic structures
(synchronous/asynchronous motions, duration of motions, etc.)

Psychological experiments
- Temporal difference of beginning time between eyes and mouth is
important to discriminate social, pleasant, and unpleasant smiles
(Nishio&Koyama1997)
- Human recognition of facial expressions depends on duration of
motion (Ekman&Friesen1982, Kamachi2001, Krumhuber2005)
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Facial Score: Interval-Based Facial Action Description

» Define facial parts — move independently
* Define modes - motion primitives (dynamics)

Interval: { beginning point, ending point , mode label}

) \ time transition between modes
M >
P?»ft{ i [T N = D
s EE = __§ \\@’:/
MI(NP)
Part{ M;Np) - . /. \
PNp M;Np) Np}
M:Np)
modeY
Facial Score: {Interval set of part1, ... , Interval set of part N}

@t timing structure among modes (d@
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Facial Expression Generation and Recognition

Facial Expression
Categories

A\

el1-b1

b2 - b3

Timing Structure:
Distributions of
Temporal Difference

Image Sequence

Video Capture / Display

Facial Score

Interval Relation
Extraction

Interval Pattern
Generation

Feature
Extraction

Back

facial
part 1

Projection

mode12 I'I-H

[modeﬂ

-
- w

Segmentati

1
mode21
facial m0d822l-' =-_ = -
part 2

Generation

Feature Vector Sequence

E 3

values of elements
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2. Automatic Acquisition of Facial Scores

» Definition of parts
» Definition of modes
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Facial Parts in Facial Scores

 Follows Ekman’s definition

— Parts = {left/right eyebrow,
left/right eye, nose, mouth}

* Feature vector of each part
— X,y coordinates of feature points

(a) _ (@ , (@) (a) (@)\T
z T (Xl 9 yl 5¢°°d XNa 2 yNa ) Active Appearance Model(AAM)

a < Parts (Cootes 1998)

(dimensionality: each eyebrow : 10,
each eye: 16, nose: 22, mouth: 16)
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Facial Modes in Facial Scores

Smiled four times
Feature vector: x,y coordinates of feature points around right eye (eight points)
Length: 1000 frames

-0.04 —-_‘_-_‘/"_"""I—\-._.__,___r S

006 [ cmiins i I s S 1y

sty o

CIEnTER

%,
w S 2L C——-

-y
i 4 wimi =y £ A
-0.08 |* '};_,_,.....r}-':f ! Bt

-0.10

-0.12

vector elements

-0.14

o] 200 400 600 800 time 1000
e B [l N e

Distanee between LOS

segments

Ty e W TP S— |
distance
B
Tracked by ACtive Appearance Model 6.8 ..‘1{-
(Cootes 1998) [ S R RS T

Thanks to Stegmann’s AAM-API 4z 08 0t o 04 0s 12

Sgaled by MDS (x)



vector elements

vector elements
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Determine the number of modes (dynamical systems)

« Find a rapid change of model fitting error curve

=t Err(N) = \/Z;H origiy—gen™ o ||’

E L = —
" mm - =
st i 0.20 | -
08 [ __ 0.18 !
T £ o.16
012 | -
i T ) | ~] LE 0.14
o 200 400 800 800 im0 0.12 I .
Ygen(N =12) o010 L
O 30 40
| —~ 0.04 [ ' _
= _ |
= 0.03 | .
LLi i ]
' 002 | -
2 oot [ )\ ... threshold=0.01 1
E |
7 L 0 . L N .
0 200 400 600 800 ;- 1000 o) ’ 1 O : 20 : 30 . 40

Y (original) Number of systems (N)
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3. Evaluation

» (Generation of expressions
» Discrimination of expressions
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Generation of Facial Expression

Num. of modes: 12 in each parts




2007.2.7

Discrimination of facial expressions

« Subjects
— Intentional smile
: separable?
— Spontaneous smile
— Six (male)
— about 30-50 times for each smile category
 Method

— Video data
* VGA480x640(down sampling to 240x360) , 60fps
— Instruction of expressions
» Start from neutral face
 Intentional: make smile during watching a disgust movie
» Spontaneous: watch Japanese stand-up comedy movies
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Timing Structure in Facial Scores

Intentional Spontaneous

facial score

left eye
nose nose
mouth : mouth - e—
o os time o os_time
Neutral Onsef/ Smiling™™ Neutral Onset ~ Smiling ™!
6
’ 5 o o intentional smile @
spontaneous smile o
41
left eye 75
%2 [ ®
nose £ > © o e
E'U ® (o ® ®
mouth : .
-2 ®
3 0 1 2 3 4 5 6

bnose - bmouth [frame]
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Extract Timing Structure from Facial Scores

1. Use temporal differences among the beginning and ending points of
“‘onset” and “offset” motion

2. Calculate two-dimensional distributions using a combination of two
temporal differences as the axes

3. Calculate distance between the distributions of two smiles for all the
combinations in 2

Loft eye Tl B}
Nose LI ¢ 4
Mouth o Q d O
Neutral i Onset Smiling Offset Neutral

i e—



Me(bnose - €mouth) [frame]

Mb(€nose - €mouth) [frame]

Me(bncse - bmnuth) [frame]

Result of Discriminating

2007.2.7

wo Smiles

Chose two axes that provides the maximum distance between two distributions

Mb(bleye - Emouth) [frame]

x t Subject A
-50 . % ® intentional smile x| ]
100 . o P, spontaneous smile e ]
e %
L]
-150 . « ° . ]
*,"* L
-200 .' .
L]
-250
]
-300 . N .
-350
-10 0 10 20 30 40 50
Mb(bleye - bmouth) [frame]
20 . - : - :
0 :%W ;d' ° o
20 ane® s B® .
LY
-40 oo ® .
-60 . ®
-80 *
-100
Subject C
-120 intentional smile  x
-140 . spontaneous smile e
-10 0 10 20 30 40 50 60
Mb(bleye - bmouth) [frame]
40
30 .
20 .
x X x
10 ¢ . : %48 % ,jf):ggx
0 . :0 d‘ LTI §<>§§(
-10 e s o X x
.
-20
30 Subject E . .
40 intentional smile .
- spontaneous smile e
070 60 0 40 30 20 -0 0

Me(enose - emoutn) [frame] Me(bnose - €leye) [frame]

Me(bieye - emouth) [frame]

0
20 * X X ’><<
_40 KR ol

.. .,

A

[ ]

-80 e , ¥

100} ° ° Y
- L

. l o |
-120 ® .
-140 Subjeci B °
N " - .Q
_160| | intentional smile .
spontaneous smile e .
-180
-140 -120 -100 -80 -60 -40 -20 0
Mb(bnose - €mouth) [frame]

20 .

. e . * .

0 e . s ® ;§ Eg

L ) ‘ x %( §

-20 * e

x® "%
-40 *
X
x
-60 %
. xXx
80 Subject D
intentional smile  x
-100} | spontaneous smile e} .
-300 -250 -200 -150 -100 -50 0
Me(bleye - emouth) [frame]

0 x
50 | . * . Z x”§><
00 o ° t ., %

N . b

-150 . . ® e
-200 + - o?®
-250
-300 . ]
_350 Subject F

intentional smile  x
-400 | | spontaneous smile &

s s s [ ]
60 -50 -40 -30 -20 -10 0 10

Mh(enose - emouth) [frame]

Six subjects
intentional smile X
spontaneous smile @

Recognition rate of each subject
based on the support vector machine
(leave-one-out method)

subject intentional (%) Spémtaneous (%)

A 100 83.8
B 100 79.4
C 82.4 96.4
D 85.1 79.7
E 85.3 90.3
F 96.6 93.1
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Discussion

* Analysis of timing structure in multipart motion of

facial expression

— Successfully discriminated and recognized intentional and
spontaneous smiles

Future Work

1. Long term observation (video capturing)
e Find expression categories in a bottom-up manner

2. Expression in a context
e conversation, singing, watching movies
e relation among multiple subjects

3. Personality

e Common structure and modes
e Specific structure and modes



Chapter 5

Modeling Timing Structures in Multimedia Signals
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Temporal Relation in Multimedia Signals

Multimedia signal

Camera

Microphone ‘ M

(

\

Recognition by multimedia integration (ex.) Audio-visual speech recognition

—

Audio

~

Speech % Integration [> Classification
:l/l\ Video, Motion
J
. . . . )
Media signal generation from another related signal  (ex.) Lip sync.
Audio E> Media Conversion E> Video, Motion
/




Related Work
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State relation in adjacent frames

f{mm’.’vm'.’\’n%vﬂ*u'.ﬂ\w-ﬁ —

visual state

audio state

=3,
s 4

frame

»

(ex.) Coupled HMM [Nefian, et al, ICASSP 2002]

Frame-wise state co-occurrence

_ frame
audio state >
o visual sta’i l l
2 N
D — > 5

(ex.) Voice puppetry [Brand, SIGGRAPH 1999]

Open Issues

Long term relation

Synchronization mechanisms

Utterance

Lip motion

time

[
»

silence

/pal

silence /al

!

closed

open

close open

strictly synchronized

loosely synchronized

Piano sound

Arm motion

time
(YN AYS

v

QENEEEED

silence

on

/"

swing down

Y 4

up
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Timing Structure Model

There existsc@ependency with organized temporal diﬁ@etween signals
Timing structure i 3 P

_’E: ':,: _’E 54_

Directly model timing structure
using an interval based representation
O

1. How to divide signals into intervals? Interval-based HDS

. How to model timing structure
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Temporal Relation of Intervals

Input speech: frame # 140 frame # 250
/aiueo/ " ]
nine times g

continuously

i

__- B ;222
Utterance - - —— e
Segmentation (Audio)
result i i o .
Llp motion ... —— e e
(Video)
Audio feature:
1 filter bank analysis
Image feature: PCA
Temporal relation of two interv
. (bli)<bip
(without metric) <

Celle(p)

Focus on by equals starts contains flnisn by~
overlapped - e e - e
interval pairs 0

after met by overlapped by '“-»: overlaps meets before
m= dﬁ — I(p) o
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Metric Relation of Intervals
A

Overlapped interval pair g S‘a”ﬁy overlapped by
b(l;b I(l) C#G(I) N . difference of
finished by equals finishes the beginning
= points
i (b(i) - b(p) )
overlaps starts during | (I)
b(H—-b(p) e@)—e(p) | )
difference of the ending points ( e(i) - e(p) )
Example
Interval sequence A | | ]
Interval sequence B [l |
Overlapped interval pairs
; | | | | |
/" diff. of end 4 diff. of end ) 4 diff. of end ) 4 dif. of end )
% > diff. of beg.
diff. of beg. diff. of beg. " —O—
‘ > ® © diff. of beg.
g Y, \§ _J \_

J - J
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Timing Structure Model

Signal A |a1 a1 a2 337, P
Signal B o1 b1 @/ I
T 40| [rugomoe st ]|
Learning: Prepare a distribution for eagh label pairs g Audlo mods 47 «
g 201 .
(ex.) Temporal difference distributjon of pair ( = @3 «‘}E: 0 :-."'
/ diff. of ending points (end(a3) — end(b2)) \ E 20| " /O/

difference of beginning time [frame]

" [Audio mode #1 +

g | mose 53 -
R :g 20] "
diff. of beginning £, \
points (beg(a3) — beg(b2)) 2
@ -201 % 1
Fit samples with a distribution function * //
(single Gaussian, mixture of Gaussuan..y e |
-40 -20 0 20 40
difference of beginning time [frame]
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Media Signal Conversion

audﬁ

v

Input audio signal M’MWJ
1. Segmentation and identification of LDS

‘ Input interval sequence

2. Timing generation
based on learned timing ) —

structure my v N7 / v \

‘Generated interval sequence

/ 3. Signal generation from each LDS C :

=
Generated image sequence | = e JE """"
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Timing Generation via DP Algorithm

t—.Tt—.Tt—.T t
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Verification of the Algorithm (Simulation)
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Lip Motion Generation from Audio Signal

Training data
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Comparison with Regression Models

* Linear regression models
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Pianist Motion Generation

Original

Generated
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Discussion

* Timing structure model
— Explicitly represents temporal metric relation between media signals

* Media conversion based on the timing structure model
— Generates timing of one signal from other related media signals

Future work

* Apply to human-computer interaction
(ex.)
— audio-visual speech recognition
— facial expression analysis
— speaker detection in noisy environment
— utterance timing generation for speech dialog system



Chapter 6

Conclusion



2007.2.7

Summary

 Interval-based hybrid dynamical systems

— integrate discrete-event systems (subjective time) and
dynamical systems (objective (physical) time)

— explicitly model temporal relations such as
« tempo and rhythm in a signal
« timing structure among different media signals

based on temporal intervals

* Two-step learning method
— (‘qu’rprlno of dvnamloal systems based on plapnval e constraints

— Reflnement of parameters via the EM algorlthm



Future Work

Non-linear dynamical systems
— Kernel method, neural networks

Transition process between dynamics
— Smooth signal generation

Timing structure among more than three signals
— Determination of causal relationship
— Hidden interval sequence

Hierarchical structures
— Context-free grammar, hierarchical HMM
— Variable length N-gram
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Single-Media Signal

Multi-Media Signal

Modeling Multiparty Interaction

Modeling Single Human Behavior

from Multi-Channel Signals

~
Analysis of Multipart Events in Single Modality
(Chapter 4)
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Modeling Multiparty Interaction

Modeling Utterance Timing in Speech Conversation
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Modeling Multimodal Interaction
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