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Event Recognitiong

Sensor (ex. camera, microphone)

Real world

Time-varying signals

Feature Extraction
(signal processing)(signal processing)

D namic Feat re Seq ence of Static or D namic Feat reDynamic Feature Sequence of Static or Dynamic Feature

Static Pattern Recognition
(ex Nearest Neighbor)

Trajectory Matching
(ex DP matching method)

State-Transition Model 
(ex. HMM, Dynamical System,(ex. Nearest Neighbor) (ex. DP matching method) ( y y

Automaton)
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T C t f TiTwo Concepts of Time

Time flies 
faster than it 

used to…

?
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Subjective time (Kairos)
Ti h t i (N ≦) Q t t t E i t t t

Discrete-Event Systems

M( ) =

Time has no metric: (N, ≦)

Event sequence

N A

Q: state set, E: input event set

M( Statenow ,input event) = Statenext

M: Q×A → Q

Automata Petri nets

si : Countable set N → Finite set A
A = {up, down}

pdo n pdo n Automata, Petri nets
(Turing machine 1936)

updownupdown ・・・

0       1         2        3  ・・・
Order of discrete events

Objective (Physical) time (Chronos)

Time has metric : (R ≦ dist) Rn: state space

d State(t)

Dynamical Systems

Time has metric : (R, ≦, dist)

Signal data

y(t) : R l R → RkContinuous

Rn: state space

d State(t)

dt
= F(state(t))

F: Rn → Rn

Control systems, Neural networkst

y(t) :  Real num. R → space        Rk

Control systems, Neural networks
(Cybernetics 1947)Continuous change
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Advantages and Disadvantages
Discrete-Event Systems

? Signal-to-symbol problems
? Determination of states and 

events

g g

Recognizable Memory based state space State1 Subjective
Time

Long-term context

e e s

g
Concepts Turing Machine

Mode Switching
State2

State3
Time Discrete structure

Time as ordinal state 
transition

？

Metric state space Objective
Continuous change
Physical Phenomena

Real World 
Signals 

Differential Equation
Attractor

j
time

Physical Phenomena
Time as physical 
metric entity

Dynamical Systems

? Complex structures
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Hybrid Dynamical Systems

Abstraction
RecognitionConcepts g

Turing Machine
Mode Switching

Memory based state space State1

State3

Subjective
Time

Concepts

Long-term context
Discrete structure

Metric state space

Mode Switching
State2

State3

Objective

Time as ordinal state 
transition

Contin o s change
Differential Equation
Attractor

timeSymbol 
Grounding
Realization

Continuous change
Physical Phenomena
Time as physical 
metric entity

Robot Gesture   Speech Sound    Image VideoObservation

R l W ldReal World
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Existing Studies
• Computer vision

– Hybrid dynamical models [C. Bregrler 1997]
– Multi-class condensation [B North A Blake M Isard and J Rittscher 2000]

g

Multi-class condensation [B. North, A. Blake, M. Isard and J. Rittscher, 2000]
– Switching linear dynamical systems [K.P. Murphy 1998, V. Pavlovic 1999]

• Speech recognition
– Segment models [M. Ostendorf 1996]

• Computer graphics
M ti t t [Y Li T W H Y Sh 2002]– Motion textures [Y. Li, T. Wang, H.Y. Shum 2002] 

• Neural networks, Control theory, etc.
Piecewise linear models [R Batruni 1991]– Piecewise linear models [R. Batruni 1991]

– Switching space models [Z. Ghahramani 1996]
– Piecewise affine maps [L. Breiman 1993]

– Hybridautomata [R. Alur 1993]

Integration of “subjective time” and “objective time”?
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Dynamic Structures of Eventsy
Sequential structures

ti
up down downup

tempo and rhythm
time

p p

walk sit

Constituted by multiple objects left leg

right leg

time
forward forward bend

right leg

forward forward bend

utteranceObserved as different media signals open close closeopenclosed
motion

utterance

audio
(power)

on off on off

timing

How to represent “a sense of time” of human?
timing
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Temporal Intervalsp

Discrete events
Subjective Time
(ordinal structure)

Dynamics A

Dynamics BDynamics B

Interval : a temporal range represented 
by a dynamical system

Objective (Physical) Time
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Orchestration of Dynamicsy
Dynamics A Dynamics A

Dynamics B

Dynamics C

Dynamics B

Dynamics D

Unobservable

time

ti

Observable

U obse ab e

time
Multimedia
Signal
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Interval-Based Hybrid Dynamical Systemy y y
represents complex temporal structures with physical-time grounding

1. Interval-based state transition
 to model rhythm and tempo of a single signal patterns

2. Timing structure model
 to model timing structure in multiple signal patterns

3. Clustering of dynamical systems

remainopen

close

g y y
 to find a set of dynamics Dynamical system1

Signal A
(li ti )

remain
closed

p

Dynamical
system2 Dynamical system3

open close closeopenclosed(lip motion)

Signal B
( ) ffon

Dynamical 
system1’

(audio) on off on off offon

Dynamical system2’
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Overview of the Thesis
Modeling Single-Channel Signals
(Segmentation Tempo Rhythm)

Modeling Multi-Channel Signals
(Timing Structure )(Segmentation, Tempo, Rhythm) (Timing Structure )
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Chapter 2 

Interval-Based Hybrid Dynamical Systemy y y



2007.2.7

Interval-Based Hybrid Dynamical System

1
q2

Finite state automaton P( <q2, 2> | <q1, 1> )

D i lDynamical

Interval-based transitionDiscrete state

),|,( 1   pikjk qIqIP 
q1

P( <q1, 1> | <q2, 2> )

Dynamical
System D2

Dynamical
System D1

 ,jq
Intervals

Internal
state space

Linear dynamical systems

duration

time
<q1 3> <q1 2><q2 4>

Interval sequence

)()(
1

)( i
t

i
t

i
t wgxFx  

State transition
<q1, 3> <q1, 2><q2, 4>

time

ttt vHxy 
Observation

time

Internal state sequence
Observation H

Signal generation
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Linear Dynamical Systems
• Internal state nRx
• State transition • Observation

y y

)()(
1

)( i
t

i
t

i
t wgxFx  

State transition

ttt vHxy 

Observation
transition matrix observation matrix

bi i b ti i

• Parameters: { F, g, H, noise covariance matrices, initial state}

bias process noise observation noise
( wt, vt ~ Gaussian) 

• Generation of continuous change

FH
State

generated
training data

e
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Interval-Based State Transition
• Modeling relation of duration lengths between adjacent intervals

to represent tempo and rhythm– to represent tempo and rhythm
– to enhance robustness of segmentation (top-down constraints)

P( Ik=<qj, τ> | Ik-1=<qi, τp> ) = P( sk=qj | sk-1=qi ) P(lk= τ| sk=qj,sk-1=qi,lk-1=τp)

<qi, τp> <qj, τ>Interval sequence

P(lk= τ,lk-1=τp | sk=qj,sk-1=qi) lk (sk=qj)

l ( )

Assume Gaussian distribution

lk-1 (sk-1=qi)
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Example of Interval Sequence Generationp q
• Randomly generated interval sequences using manually given distributions

Three discrete states

Correlation = 0
length of
t t 1

length of state2

length of
t t 2

length of state3

length of
state3

length of state1Three discrete states

state1 state2 state3

Generated
Sequence

Correlation ≒ 0.9
length of

length of state2

length of

length of state3

length of

length of state1

length of
state1

length of
state2

length of
state3

GeneratedGenerated
Sequence
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Chapter 3 

Learning Method for the Interval-Based Hybrid 
Dynamical System
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Difficulty of the Parameter Estimationy

N d t d fi t f d i ( i iti )

Assume that only a set of vector sequences is given

• Need to define a set of dynamics (primitives)
– Defined manually in existing work

• Need to solve paradoxical nature of parameter estimation• Need to solve paradoxical nature of parameter estimation
– Segmentation requires identified dynamical systems 
– Identification of dynamical systems requires segmentation

t ti d l b li• Need to solve initialization problem
of the EM algorithm 
– Strongly depends on its

initial parameters

segmentation and labeling 
based on current parameters

update the parameters

E step

M step
iteration

initial parameters update the parametersp

)1(
1

)1(
ttt wxFx  

remainopen

close

1 ttt

closed)2(
1

)2(
ttt wxFx   )3(

1
)3(

ttt wxFx  
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Overview of the Trainingg

• Two-step learning method
training data set

typical data set

The number of dynamical systems
Parameters of dynamical systems

Hierarchical Clustering 
of Dynamical Systems

fix

Refinement process of parameters
Initialization

Parameters of dynamical systems
Parameters of an automaton

via the EM algorithm

fix
Parameters of an automaton
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Example of Two-Step Learning Method
timeHierarchical Clustering

feature vector sequence (PCA coef.)

input lip image:
/mamamama//mamamama/

frame 11 frame 3514 21 26 30

remain closed open remain open close

remain closed

Trained Hybrid system initialized by a closed lip
Training via the EM algorithm

remain closed

open
close

remain
open generation
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Hierarchical Clustering of Dynamical Systems

training data set

g y y

typical data set

The number of dynamical systemsHierarchical Clustering y y
Parameters of dynamical systems

I iti li ti

g
of Dynamical Systems

Refinement process of parameters
via the EM algorithm

Initialization

Parameters of dynamical systems
Parameters of an automaton
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Constrained Linear System Identification

• State transition • Observation

y

)()(
1

)( i
t

i
t

i
t wgxFx   ttt vHxy 

transition matrix observation matrix

bias process noise observation noise
( w v Gaussian)

Sgenerated

( wt, vt ~ Gaussian) 

FH

State
Overfitting problem

System behavior is determined by transition matrix F

Need constraints on the transition matrix F
y y
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Class of Linear Dynamical Systemsy y

tttt ecececxFx   222111

• Temporal evolution of the state

nnnt ecececxFx   2221110

1
1

1 ][][ 









 eeeeEEF




|λ1| > 1 and |λ2| > 1|λ1| < 1 and |λ2| < 1 |λ1| > 1 and |λ2| < 1

11 ],...,[],...,[







 n

n

n eeeeEEF




(ex ) n = 2 |λ1| > 1 and |λ2| > 1|λ1| < 1 and |λ2| < 1 |λ1| > 1 and |λ2| < 1

λ1 and λ2 is 
iti l

(ex.) n  2

positive real

λ1 and λ2 is
complex num. NA0.3max 

0.1max 
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Constrained Linear System Identificationy

• Eigenvalue constraints

v





 )(

1
)(

11
i

n
i ff g

– Upper bound of eigenvalues
is determined by

u










)()(

1

)(

i
nn

i
n

i
rc

ff
f


)(iF





n

c

i
rcr

fUpperBound
1

)(max Deduced from
Gershgorin’s theorem

1

• Estimation of transition matrix X0 X1

Least squares problem

Interval





TT

2)(
1

)(
0

)()*( ||||minarg
)(

iii

F

i XXFF
i

x0 x1 xLxL-1

( d i )

Least squares problem




 )(

0
)(

1
12T)(

0
)(

0

T)(
0

)(
1

0
)(lim

2

iiiiii XXIXXXX 


2Stop the limit before converges to 0

(pseudo-inverse)

2
2

Stop the limit before     converges to 0
controls the scale of matrix elements
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Algorithm of Hierarchical Clusteringg g
1. Divide the training data into short intervals (Initialization)
2. Identify the parameters of the dynamical systems from each interval
3. Calculate distances of all the dynamical system pairsy y p
4. Merge the nearest pair of dynamical systems (intervals are also merged)
5. Identify the new dynamical system from the merged intervals
6. Repeat 3 to 5 

Interval sequence

Distance Space
merge the nearest dynamical system pair

Distance Space

Distance between dynamical systems

time

LDS i LSD j

Identification Identification

Estimation
Average of Kullback-Leibler divergences

)||()||( ijji DDKLDDKL  time

Interval i Interval j
2

)||()||(
),( ijji

ji DDDist 
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Simulation Result
• Input data: generated from three dynamical systems

Prediction error of overall systems 
at each iteration step
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Refinement Process of All the Parameters

training data set

The number of dynamical systemsHierarchical Clustering 

typical data set

y y
Parameters of dynamical systems

I iti li ti

g
of Dynamical Systems

Refinement process of parameters
via the EM algorithm

Initialization

Parameters of dynamical systems
Parameters of an automaton
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Evaluation based on Simulated Data
• Interval-Based HDS with known parameters

  1.06.0)1(FOriginal system

q2

q1

q3












2.01.0

)1(F

 1.05.0)3(











6.00.0
0.03.0)2(F

Original system

q











3.01.0
1.05.0)3(F



CompareGeneration

Used for clustering (one sequence)

Used for EM algorithm (10 sequences)

q1Trained system

E ti t d
q2 q3

Estimated
parameters



2007.2.7

Simulation Result
• Comparison between given and estimated parameters








 


10.060.0)1(F 









300100
10.050.0)3(F






00.030.0)2(F

Original (ground truth)





 20.010.0 



 30.010.0



 60.000.0

Estimated parameters via clustering














21.001.0
14.001.0)1(F 













75.011.0
44.074.0)3(F











06.021.0

30.086.0)2(F

Estimated parameters via clustering

 

 21.001.0  06.021.0

Estimated parameters via EM algorithm














20.010.0
10.060.0)1(F 











29.010.0
09.049.0)3(F










52.006.0
02.032.0)2(F
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Discussion

• Interval-based hybrid dynamical system
Interval based state transition to model tempo and rhythm– Interval-based state transition to model tempo and rhythm

– Linear dynamics to model continuously changing patterns

• Two-step learning method for the interval-based
– Clustering of dynamical systems + EM algorithm

Constrained system identification based on eigenvalues– Constrained system identification based on eigenvalues
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Chapter 4 

Analysis of Timing Structures in Multipart Motion 
of Facial Expression
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Facial Expression as Communication Protocolp

• Communication via facial expressions
– Generation

• Express internal state
– Recognition Intentional

(Social)
• Estimate internal state

• Acquisition of expressions

Expression

Spontaneous

(Social)

– Intrinsic
• Smile, cry, surprise

– Learned from experience (parents)

Spontaneous
(Emotional)

• Social contexts

F i l i E ti l tFacial expression = Emotional category

Facial expression = Communication protocol
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Related work

• FACS (Facial Action Coding System) (Ekman, et al.)
– AU (Action Unit) : motion primitives in faces
– Describe facial expressions based on combination of AU

( ) S i AU1+2+5+26(ex.) Surprise = AU1+2+5+26
– Describes only emotional categories

• {happiness, surprise, fear, anger, disgust, sadness}{happiness, surprise, fear, anger, disgust, sadness}

Problem:   cannot describe dynamic structures 
(synchronous/asynchronous motions duration of motions etc )

Psychological experiments

(synchronous/asynchronous motions, duration of motions, etc.)

・Temporal difference of beginning time between eyes and mouth is 
important to discriminate social, pleasant, and unpleasant smiles
（Nishio&Koyama1997）

f f f・Human recognition of facial expressions depends on duration of 
motion（Ekman&Friesen1982, Kamachi2001, Krumhuber2005）
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Facial Score: Interval-Based Facial Action Descriptionp

• Define facial parts – move independently
• Define modes - motion primitives (dynamics)Define modes motion primitives (dynamics)

Interval: { beginning point, ending point ，mode label}

F i l S {I t l t f t1 I t l t f t N}Facial Score: {Interval set of part1, … , Interval set of part N}

Represent timing structure among modes (dynamics)p g g ( y )
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Facial Expression Generation and Recognitionp g
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1 Definition of Facial Scores1. Definition of Facial Scores
2. Automatic Acquisition of Facial Scores
3 Evaluation3. Evaluation

Definition of partsDefinition of parts
Definition of modes
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Facial Parts in Facial Scores

• Follows Ekman’s definitionFollows Ekman s definition
– Parts = {left/right eyebrow, 

left/right eye nose mouth}left/right eye, nose, mouth}

• Feature vector of each part• Feature vector of each part
– x,y coordinates of feature points

Τ)()()(
1

)(
1

)( ),,...,,( a
Na

a
Na

aaa yxyxz  Active Appearance Model(AAM)
(Cootes 1998)Partsa

(dimensionality: each eyebrow : 10, 
each eye: 16, nose: 22, mouth: 16)

Partsa
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Facial Modes in Facial Scores
• Smiled four times
• Feature vector: x,y coordinates of feature points around right eye (eight points)

L th 1000 f• Length: 1000 frames

segments

pseudo
distance

Tracked by Active Appearance Model

space

y pp
(Cootes 1998)

Thanks to Stegmann’s AAM-API
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Determine the number of modes (dynamical systems)( y y )

• Find a rapid change of model fitting error curve

LNE 2(N) ||i||)(  


t
ttNErr

1
2

)(
(N)

)( ||genorig||)(

Y (original)
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1 Definition of Facial Scores1. Definition of Facial Scores
2. Automatic Acquisition of Facial Scores
3 Evaluation3. Evaluation

 Generation of expressions Generation of expressions
 Discrimination of expressions
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Generation of Facial Expressionp
Num. of modes: 12 in each parts

Num. of modes: 2 in each parts
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Discrimination of facial expressionsp

S bj t• Subjects
– Intentional smile

Spontaneous smile
separable?

– Spontaneous smile
– Six (male)
– about 30-50 times for each smile categoryg y

• Method
– Video data

• VGA480ｘ640(down sampling to 240x360) , 60fps
– Instruction of expressions

• Start from neutral face• Start from neutral face
• Intentional: make smile during watching a disgust movie
• Spontaneous: watch Japanese stand-up comedy movies
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Timing Structure in Facial Scores
Intentional Spontaneous

facial score

g

facial score facial score

Neutral Onset Smiling Neutral Onset Smiling
time
[frame]

time
[frame]

left eye

nose

mouthmouth



2007.2.7

Extract Timing Structure from Facial Scoresg
1. Use temporal differences among the beginning and ending points of 

“onset” and “offset” motion

2. Calculate two-dimensional distributions using a combination of two 
temporal differences as the axes

3. Calculate distance between the distributions of two smiles for all the 
combinations in 2

L ftLeft eye

Nose

Neutral NeutralSmilingOnset Offset
Mouth
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Result of Discriminating Two Smilesg
Chose two axes that provides the maximum distance between two distributions

Six subjectsSix subjects
intentional smile
spontaneous smile

Recognition rate of each subject
based on the support vector machine
(leave-one-out method)
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Discussion
• Analysis of timing structure in multipart motion of 

facial expressionfacial expression
– Successfully discriminated and recognized intentional and 

spontaneous smiles

1 L t b ti ( id t i )
Future Work

1. Long term observation (video capturing)
 Find expression categories in a bottom-up manner

2 Expression in a context2. Expression in a context
 conversation, singing, watching movies
 relation among multiple subjects relation among multiple subjects

3. Personality
 Common structure and modes
 Specific structure and modes
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Chapter 5 

Modeling Timing Structures in Multimedia Signalsg g g
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Temporal Relation in Multimedia Signalsp g
Multimedia signal

Camera

Microphone

Recognition by multimedia integration (ex.) Audio-visual speech recognition

Audio
ClassificationSpeech Integration

Audio

Video, Motion

Media signal generation from another related signal (ex.) Lip sync.

Audio Video, MotionMedia Conversion
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Related Work
State relation in adjacent frames 

frame

Frame-wise state co-occurrence 
frame

audio state audio state

visual state visual state

(ex.) Coupled HMM [Nefian, et al, ICASSP 2002] (ex.) Voice puppetry [Brand, SIGGRAPH 1999]

Frame based

time

Open Issues
Synchronization mechanisms Long term relation

Frame-based

onsilencePiano sound

time

/pa/silence silence /a/Utterance

time

swing down upArm motion
/pa/silence silence /a/Utterance

closed open close openLip motion

strictly synchronized loosely synchronized
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Timing Structure Modelg
There exists mutual dependency with organized temporal difference between signals

Timing structureTiming structure

Directly model timing structure
Key Idea

Directly model timing structure
using an interval based representation

1. How to divide signals into intervals? Interval-based HDS

2. How to model timing structure ?
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Temporal Relation of Intervalsp
frame # 140 frame # 250Input speech:

/aiueo/
nine times

Utterance
(A di )S t ti

nine times
continuously

(Audio)
Lip motion
(Video)

Segmentation
result

Temporal relation of two intervals
Image feature: PCA

Audio feature:
filter bank analysis

Foc s on

Temporal relation of two intervals
(without metric)

Focus on 
overlapped
interval pairs
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Metric Relation of Intervals
Overlapped interval pair

I(i)

I（ｐ）

b(i) e(i)

b(p) e(p)

)()( pbib  )()( peie 

Interval sequence  A

Interval sequence B

Example

Overlapped interval pairs
Interval sequence B

diff of beg diff of beg
diff. of beg.

diff. of end diff. of end diff. of end diff. of end

diff. of beg. diff. of beg.
diff. of beg.
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Timing Structure Modelg

a2 a3 a1Signal A a2 a3 a1a1
b1 b2Signal B b3 b1 b2 b3

Learning: Prepare a distribution for each label pairs

diff of ending points (end(a3) end(b2))

Learning: Prepare a distribution for each label pairs

(ex.) Temporal difference distribution of pair (                   )a3 b2

/ /diff. of ending points (end(a3) – end(b2)) /o/

Fit samples with a distribution function 

diff. of beginning
points (beg(a3) – beg(b2))

/i/(single Gaussian, mixture of Gaussian…) /i/
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Media Signal Conversiong

Input audio signal
audio

Input audio signal

1. Segmentation and identification of LDS

Input interval sequence

2 Ti i ti2. Timing generation 
based on learned timing 

structure model

Generated interval sequence

3 Si l ti f h LDS

Generated image sequence

3. Signal generation from each LDS

g
motion
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Timing Generation via DP Algorithmg g
t

time
ttt

Input interval sequence

Generated interval sequence

…
… )(kI
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Verification of the Algorithm (Simulation)g ( )
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Lip Motion Generation from Audio Signalp g
Training data

AudioAudio

Video

Generated interval sequence

#250frame#140

Generated image seq.
/i/ to /u/ /u/ to /e/ /e/ to /o//a/ to /i//o/ to /a/
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Comparison with Regression Modelsp g
• Linear regression models

time

Audio

Vid

• Average Error Norm per Frame

Video

g p
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Pianist Motion Generation

Original

GeneratedGenerated
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Discussion

• Timing structure model
– Explicitly represents temporal metric relation between media signals

• Media conversion based on the timing structure model
– Generates timing of one signal from other related media signals

• Apply to human-computer interaction

Future work
Apply to human computer interaction
(ex.)
– audio-visual speech recognitiong
– facial expression analysis
– speaker detection in noisy environment
– utterance timing generation for speech dialog system
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Chapter 6 

ConclusionConclusion
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Summaryy

• Interval-based hybrid dynamical systems
i t t di t t t ( bj ti ti ) d– integrate discrete-event systems (subjective time) and
dynamical systems (objective (physical) time)

– explicitly model temporal relations such as
t d h th i i l• tempo and rhythm in a signal

• timing structure among different media signals
based on temporal intervals

• Two-step learning method
– Clustering of dynamical systems based on eigenvalue constraintsClustering of dynamical systems based on eigenvalue constraints
– Refinement of parameters via the EM algorithm
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Future Work

• Non-linear dynamical systems
– Kernel method, neural networks

• Transition process between dynamics• Transition process between dynamics
– Smooth signal generation

• Timing structure among more than three signals
– Determination of causal relationship

Hidden interval sequence– Hidden interval sequence

• Hierarchical structures
– Context-free grammar, hierarchical HMM
– Variable length N-gram
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Modeling Multiparty Interactiong p y
Modeling Single Human Behavior

from Multi-Channel Signals Modeling Multiparty Interaction
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