
Chapter 6

Conclusion

6.1 Summary

In this thesis, we proposed a novel computational model, named an interval-
based hybrid dynamical system, to model dynamic events and structures. As
we described in Chapter 2, we exploited temporal intervals as an interface be-
tween dynamical systems, which is suitable for describing physical phenomena
(consider time as physical metric entity), and discrete-event systems, which is
suitable for describing human subjective or intellectual activities (consider time
as ordinal state transition).

To overcome the paradoxical nature of the learning process, which requires
to solve temporal segmentation and system identification problems simultane-
ously, we proposed a two-step learning method in Chapter 3. Due to the proposed
method, we can extract linear dynamical systems that model primitive dynamics
of the event from the given temporal signals.

In Chapter 4, we applied the proposed model to describe structured dynamic
events that consists of multipart primitives. We showed that the systems can an-
alyze dynamic features based on the timing structures extracted from temporal
intervals. We examined the effectiveness of the timing structure analysis to dis-
criminate fine-grained facial expression categories such as intentional and sponta-
neous smiles of which existing methods had difficulty to represent the difference.

In Chapter 5 we proposed a “timing structure model” that directly repre-
sents timing structures in multimedia signals, such as synchronization and mu-
tual dependency with organized temporal differences among temporal patterns
of media signals. Experiments on simultaneously captured audio and video data
showed that time-varying signals of one media signal can be generated from an-
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other related media signal using the trained timing structure model.
In the next section, we show some open issues that we were not able to cope

with in this thesis, which can be divided into two aspects: (1) the extension of
the proposed computational model, and (2) the situations that the model can be
applicable including multiparty interaction.

6.2 Future Work

6.2.1 Extension of the Interval-Based Hybrid Dynamical System

In this subsection, we show some directions that the proposed interval-based hy-
brid dynamical system should be extended for future work.

(a) Non-linear Dynamical Systems

The selection of appropriate dynamical models depends on the nature of signals
and the design policies of users. We chose to use linear dynamical systems be-
cause most of the continuously changing human motions can be approximated by
linear dynamics. This is because the motions are generated by the expansion and
contraction of muscles, and are controlled to be stable (e.g. no oscillation). How-
ever, nonlinear dynamical systems sometimes can be more reasonable choice for
modeling time-varying patterns such as consonants in human speech. One of the
straight forward methods to extend our model is the use of “kernel methods”,
which are major approach for the nonlinear data analysis. The kernel methods
convert nonlinear algorithms in the original data space into linear algorithms in
higher (or infinite) dimensional feature space. For example, kernel principal com-
ponent analyses utilize inner products in the higher dimensional space [HTF01].
We need further discussion to give a guideline to select models.

Some motion generation researches in robotics design the overall system as a
nonlinear dynamical system rather than a hybrid dynamical system. For example,
Okada represented the motion of robots as a cyclic attractor in the configuration
space [Oka95], and modeled the switching process between cyclic attractors in the
configuration space based on continuous dynamics [ONN03]. Recurrent neural
networks (RNN) also utilize its nonlinear dynamics to represent complex motion.
Ogata et al. use the RNN with parametric bias (RNNPB) to extracting [OOK+05],
which change its internal dynamics based on the additional input to the network
(parametric bias). Morita et al. proposed RNN with non-monotonous function
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for modeling temporal pattern recognition [MMM02] and extended the model to
represent symbolic contexts of patterns using selective desensitization of some of
elements [MMM02, MMMS04].

(b) Modeling Transition Process between Dynamical Systems in adjacent In-
tervals

The state in the internal state space often changes discontinuously when the au-
tomaton changes the dynamical systems. To model co-articulated dynamics such
as phonemes in speech data and to generate smooth motion, we need transitional
process modeling between two dynamical systems (e.g., the modulation of dy-
namics by the preceding dynamics). A straightforward method is to model the
interpolation of two dynamics in adjacent intervals. Although the interpolation
provides low-cost method to smoothing two dynamics, it sometimes generates
unnatural motion at the joint of the two intervals. Li et al. proposed to set the end
constraints of a synthesized segments [LWS02]. They deduced a block-banded
system of linear equation from the constrains, and realized smooth motion texton
synthesis by solving the equation.

(c) Modeling Temporal Structures among More Than Three Signals

While we concentrated on a timing structure model in two media signals in Chap-
ter 5, we can apply the model to represent the structures among more than three
media signals by defining pairs of signals and constructing timing structure mod-
els for each of the pairs similar to coupled HMMs [BO97]. On the other hand, we
will be required to introduce other timing structure models if we consider a prob-
lem specific causality between signals. For example, we can introduce a unob-
servable interval sequence that controls a generation timing of observable media
patterns. This model might be applied to a large area of human (animal) behavior
because many of muscular motions are controlled by unobservable spike signals
from a brain with physical delay [Pop85].

(d) Modeling Complex Structures of Dynamic Events

We exploited a simple finite state automaton as a discrete-event model in order to
concentrate on modeling human body actions and motions, which have relatively
simple grammatical structures (represented by a regular grammar) compared to
natural languages. To model languages (e.g., human speech and signs) and other
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complex situations (e.g., human communication and strategies), more complex
grammatical structures such as N-gram models and context free grammars will
be required together with its parameter estimation method.

There are several aspects of structures to extend our model. In the follow-
ing, we show some of the existing approaches in machine learning and computer
vision to represent complex structures.

Context-free grammars. A stochastic context-free grammar (SCFG), which de-
fines probabilities of each of productions in a context-free grammar, is used
for modeling grammatical structures among primitive events. Ivanov and
Bobick use the SCFG model to recognize dynamic situations of parking area
and human gestures [IB00]. Moore and Essa extended the model to detect
errors and to recover the detected errors, and applied for modeling behavior
of players involved in card game situation [ME02].

Layered structures. A hierarchical HMM (HHMM) was proposed by Fine,
Singer and Tishby in machine learning community, and some computer vi-
sion applications were realized based on the model [NBVW03, BPV04]. The
model is the extension of HMMs that each of states is capable to have not
only output probability but a child HMM. As a result, the model can repre-
sent layered structure of events based on the recursive definition of HMMs.
The HHMM is the simplified model of SCFG, therefore, the computation
cost of probabilistic inference in HHMM is lower than that of SCFG.

Higher-order Markov models. Variable-length N-gram model was also pro-
posed by Ron and Tishby [RST96]. They used a prediction suffix tree to
represent and construct a variable-length N-gram model from an input sym-
bol sequence. The model can be converted to a finite state automaton in
which each state corresponds to a sequence of symbols. Galata et al. applied
the model to represent long-term context of human behavior and provided
some preliminary results [GJH01].

A key issue when we introduce layered structures of discrete states into the
interval-based hybrid dynamical system is how to determine the layer in which
temporal intervals and temporal relations among the intervals are defined. As we
assumed in this thesis, a set of modes (dynamic primitives) corresponds directly
to a set of discrete states, and the modes mapped one-to-one to the discrete-states.
An intuitive extension is to consider a sequence of modes (linear dynamical sys-
tems) as a single discrete state based on the variable-length N-gram model. In a
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sense, the sequence of modes constitute a “phrase” of dynamic primitives, and the
discrete-state transition determines the sequence of the phrases. In this case, we
can regard duration of phrase as an interval, and can introduce duration lengths
of phrases. We can use a prediction suffix tree to train this model after the set of
modes are determined by the clustering method proposed in Chapter 3.

6.2.2 Modeling Multiparty Interaction

In this thesis, we concentrated on applying the interval-based hybrid dynami-
cal system to model a single human behavior rather than multiparty interaction,
because our first concern is to see the effectiveness of the proposed model for
modeling and learning dynamic events and structures from multimodal signals
(see Figure 6.1 left). Extending the proposed scheme to model multiparty interac-
tion and to realize human-machine interaction systems, we have to aim at finding
key features of interaction dynamics or protocols in human-human communica-
tion, and exploiting the found features for natural and smooth human-machine
communication (Figure 6.1 right).

We discuss how the proposed framework of the system can be applicable for
modeling multiparty interaction and what are insufficient for our current system
in the following paragraphs.

Timing Structures in Speech Conversation

In human conversation, there exist many lexical, prosodic and syntactic elements
that help create the dialog structure [Shi05]. Especially, utterance timing (such
as transition interval in Figure 6.1 upper-right) and speaking tempo can help to
add a smooth, tense, lively or relaxing tone to the dialog. It is with this tone that
dialog can evoke feelings of pride, sorrow, fear, and enjoyment. Since we humans
are exposed to a large amount of timing structures in speech dialog during their
development, in other words, we are professional to recognize and generate tim-
ings; the users are sensitive to unnatural utterance timing and speaking tempo of
speech dialog systems.

As for the analysis of the timing structures and their effects in human speech
dialogs, Ichikawa and Sato showed that many of backchannel utterances occur
within about 0.4 second after the keyword appears in the speech of the oth-
ers [IS94]. Nagaoka et al. analyzed dialog of operators and customers in a tele-
phone shopping situation, and showed that utterance timings are one of the es-
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sential cues for determining an impression about the speaker [NDKN02]. As for
dialog systems that control utterance timing, Okato proposed the use of pitch pat-
terns in utterances to estimate the timing of backchannel responses. Kitaoka et al.
developed a response timing generator for speech dialog systems based on the
use of pitch and power patterns, power, utterance lengths, and some lexical in-
formation [KTNN05]. Fujie developed a robot that makes backchannel feedbacks
with overlaps based on the use of pitch and power patterns [FFK05].

Although the existing approaches generate timing of backchannel utterances,
non-backchannel utterances also have significant features in its generation tim-
ings. We have to use more fine categories of utterances based on the func-
tions or purpose of the speech in order to realize dialog systems that com-
municate purpose, attitude and feeling of the spoken word. The use of di-
alog acts (e.g. “question”, “statement”, “opinion”, etc.), which correspond
to illocutionary acts in speech acts [Sea86], will help to analyze and catego-
rize backchannel and non-backchannel utterances based on the functions of
them [JSFC98, SRC+00, DBCS04]. Once the categories of dialog acts are defined,
we can learn the timing structure model for each of the dialog acts, and can apply
the timing generation algorithm described in Chapter 5.

Timing Structures in Multimedia Interaction

Another disadvantage of existing timing generation applications is that the sys-
tems have no unified framework to integrate multimodal information captured
as different media signals. For example, human utterance timings are defined by
not only audio information but visual features such as facial expressions and lip
motions of others. We can also see that the facial expression of one person affects
the others expressions in our daily communication.

As we described in this thesis, the interval-based hybrid dynamical system
has a capability of modeling the mutual dependency among multiple signals. We
can therefore exploit this system to realize human-machine interaction systems
by extending the system to model timing structures among more than three sig-
nals (see Subsection 6.2.1 (c)). The use of nonlinear dynamical systems and more
complex structures should be considered to represent these general interaction
patterns (see Subsection 6.2.1 (a) and (d)).

In addition, a timing structure model is useful to estimate internal state of
humans considering the result of the facial expressions analysis in Chapter 4. Es-
timation of human internal states including intensions, interests, emotions, and
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other unobservable mental events are essential for providing appropriate infor-
mation to others. Because these mental events often affect our body via a neural
system deliberately or involuntary, we can observe distinctive dynamic features
of signals from multiple modalities that is sufficient for estimating internal states
of others. Especially, we remark the following points for taking advantage of
timing structure models for the internal state estimation:

• Internal states affects the timing structure (e.g., pause, tempo, and rhythms)
of pitch and power in speech, gestures, eye gaze, gait motion, and other
observable media signals from human activities.

• The timing of human reaction is affected by his or her internal states; for
example, we can see some time lag of the response when the person con-
centrated on other things.

From the timing structures above, information systems will understand user’s
aims and situations, and will provide kind and timely guidance, which are the
most important functions for realizing human-centered communication.

Consequently, the extension of the interval-based hybrid dynamical systems
can be a fundamental basis of interaction systems that share a sense of time with
humans based on the integration of physical and subjective time as we described
in Chapter 1.

6.2.3 Hybrid Computing in Robotics

In this subsection, we show how the proposed concept of the interval-based hy-
brid dynamical system can be applicable to the area of robotics, especially the
degree of freedom (DOF) of robots becomes very high (e.g., humanoids).

The existing methods to realize robots that control the body motion can be
categorized into model-based approaches and behavior-based approaches. A
model-based approach calculates and plans body motions and actions at the in-
side of computers based on the knowledge of the real world and robot bodies
of robots (e.g., reasoning agents [RN02, PS99] and inverse-dynamics based con-
trols [KYHH05]). A behavior-based approach exploits the interaction between
robot bodies and the environment to emerge robot actions without modeling the
real world or body (e.g., subsumption architectures [Bro86, Bro91] and a passive
walk [CRTW05]). The integration methods of two approaches, which use dif-
ferent computing resources, are under the investigation [YK02]. This stream is
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Figure 6.2: A Map of Robotics Approaches.

regarded as an integration of the horizontal direction in Figure 6.2.

On the other hand, these approaches can be divided based on different aspect
depicted by the vertical direction in Figure 6.2: dynamical systems and informa-
tion systems. For example, both the inverse-dynamics-based control and agent
reasoning can be regarded as model-based approaches, which utilize the knowl-
edge of the world including body of robots, the representation of the system is
however completely different. That is, the inverse-dynamics-based control ex-
ploits dynamical systems and the agent reasoning uses information systems.

There exist some methods to integrate these two systems. The characteris-
tics of these methods are that they first define some action primitives such as
“move left hand up” and “move right leg forward”, and then integrates these ac-
tion primitives based on information systems such as finite state machines; mean-
while, each of primitives are realized by calculation of torque based on dynamical
systems. The methods however have disadvantages that the primitives become
too coarse and abstract to generate smooth motion. This is because the primitives
are defined manually, and the temporal scale of each primitive cannot become
smaller than human recognizable scales (Problem A). It is also difficult to define
enough number of primitives when the DOF of robots becomes very high such
as in humanoids (Problem B). Moreover, appropriate energy input timings are
important to realize dynamic motion similar to human [KOT+04] (Problem C).

As we described in Chapter 3, the interval-based hybrid dynamics system pro-
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posed in this thesis has a capability of learning a set of dynamic primitives from
the given time-varying signals, it has therefore a potential to solve Problem A
and B. The size of learned primitives can be controlled to be smaller than our in-
tentional segmentation units. On the other hand, the timing generation method
described in Chapter 5 can be the basis of modeling timing structure between the
primitives (e.g., motion timing among body parts) and of determining activation
timing of each primitives in response to the input or recognized events, which
leads to the solution of the Problem C.

Consequently, the extension of the interval-based hybrid dynamical system is
expected to realize a series of smooth behavior of robots, including humanoids,
in dynamic situations where a robot contacts with objects and humans.

6.2.4 Relation to Human Consciousness

In this subsection, we consider the relation of the concepts in the interval-based
hybrid dynamical system to “human consciousness”1. We do not intend to dis-
cuss what consciousness is and where the consciousness exists in our human
body; consciousness comprises many aspects, and the definition of conscious-
ness often differs from person to person. Our motivation here is focusing on one
important aspect of human consciousness, the function of “temporal coordina-
tion”, to bring some crucial issues as extending interval-based hybrid dynamical
systems.

Why we human enjoy rhythms? The reason that the ability to enjoy rhythmic
patterns has acquired during the process of evolution may not be only for play-
ing music. We human are required to control and coordinate the timing of a series
of actions in response to perceived events. Therefore, the sensitivity to dynamic
structures among various events, which we described in Subsection 1.4.2, are in-
dispensable for humans to survive in the real world. Especially, the temporal co-
ordination within consciousness among dynamic events must be advantageous
to humans under selection pressure compared to coordination in subconscious.

1The discussion in this subsection may also be applicable to animal consciousness. It is inter-
esting to consider the difference of consciousness between humans and animals [Ecc89]; however,
this topic is beyond the scope here.

142



6.2. Future Work

Essential Features of Temporal Coordination within Consciousness

We first consider the essential features that constitute temporal coordination
within consciousness. A necessary condition for the function is to handle events
(e.g., perceived input and generating actions) apart from the physical-time do-
main. However, this feature can also be used in subconscious temporal coordina-
tion. For example, human sometimes use a clutch of a manual-transmission car
without awareness of the operation, which requires dynamic structure among
multiple events. We here concentrate on more crucial features of the temporal
coordination:

• A single time axis is used in mind for coordinating among multiple events
(e.g., action and utterance). While multiple processes can be unconsciously
activated in parallel [Lib04] (e.g., control of multiple body parts), the unified
time in mind work as coordinator to maintain the consistency among the
processes.

• Crucial time points that exist in various abstraction levels are dynamically
selected, logically combined, and coordinated. While multiple time points
of discrete events are recognizable, some points are crucial to achieve an
overall action (e.g., “knacks” of robot action [KOT+04]). We pay atten-
tion to those crucial time points as the occasion demands. Once the crucial
time points are coordinated, the dynamic structure among discrete events
in lower abstraction levels is also coordinated unconsciously.

Hence, we can handle dynamic structures that have non-fixed patterns by exploit-
ing these features.

Learning of Structure among Discrete Events in Multiple Abstraction Levels

As for learning of a novel action such as a gymnastic exercise, crucial points are
also variable. We human first find the temporal ordering relations among sensory
information (e.g., visual input) and muscular activation. We then search the tim-
ing among perceived and generating events to realize the best performance of the
action.

Once the action is acquired, we can orchestrate the control of multiple body
parts in response to perceived input without awareness if the structure among
events is fixed or simple enough; meanwhile, the learning phase requires aware-
ness of fine-grained events that determine the performance of the action. In other
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words, dynamic structures of acquired actions are push down to subconscious
domain for concentrating on obtaining and realizing more complex or composi-
tional actions that have structures in higher abstraction levels.

Direction to Extend the Interval-Based Hybrid Dynamical System

Compared to the temporal coordination within human consciousness described
above, the interval-based hybrid dynamical system proposed in this thesis is quite
restricted. As we discussed in Subsection 6.2.1, the interval system finds temporal
points of discrete events based on linear dynamics and it controls only a single
level of dynamic structure among those time points. As a more important issue,
the timing generation method proposed in Chapter 5 is only able to control the
temporal position of discrete events that have simple static distributions. In a
sense, the system handles the subconscious coordination of events.

Considering temporal coordination in human, we anticipate the following fea-
tures are essential to design information systems that fulfill the enough functions
of human-machine interaction (Subsection 6.2.2) and robotics (Subsection 6.2.3):

• The mechanism that dynamically finds the crucial points in multiple ab-
straction levels based on the context and situation

• Temporal coordination function that maintains consistency of lower abstrac-
tion levels

• Learning method that reuses the dynamic structures obtained in the past
learning to construct more complex structures

The function of temporal coordination in human consciousness also affects
the number of events of which human is aware, and may influence the length of
cognitive time in the experience, which attract many scientists’ interest [Tsu87].
We believe the design of the computational model that has satisfactory functions
to continue and survive in the real situations is necessary not only for engineering
purpose but also for understanding the mechanisms of mind process, such as
cognitive sense of time, in humans and animals. We hope the concept of the
interval-based hybrid dynamical system serve as the first step of these objectives.
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