
Chapter 2

Interval-Based Hybrid Dynamical
System

In this chapter, we introduce an interval-based hybrid dynamical system (inter-
val system). The system consists of a finite state automaton and a set of multiple
linear dynamical systems as we described in the previous chapter. Each linear
dynamical system represents a dynamic primitive that corresponds to a discrete
state of the automaton; meanwhile the automaton controls the activation tim-
ing of the dynamical systems. Thus, the interval system can generate and ana-
lyze complex multivariate sequences that consist of temporal regimes of dynamic
primitives (see Figure 1.9 for the example).

2.1 System Architecture

An interval system has a two-layer architecture (Figure 2.1). The first layer (the
top dashed box in Figure 2.1) has a finite state automaton as a discrete-event sys-
tem that models stochastic transitions between discrete events. The second layer
(the second-top dashed box in Figure 2.1) consists of a set of linear dynamical sys-
tems D = {D1, ..., DN}. To integrate these two layers, we introduce intervals (the
middle of Figure 2.1); each interval is described by < qi, τ >, where qi denotes
a discrete state in the automaton and τ denotes the physical temporal duration
length of the interval.

As we described in Subsection 1.4.3, the ending points of the intervals can be
considered to be the discrete events that the automaton models. While the au-
tomaton models only the order of discrete events without physical-time metric,
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2. Interval-Based Hybrid Dynamical System

the intervals provides physical-time grounding for the automaton due to the du-
ration length τ.

We assume that a dynamical system Di characterizes the type of dynamics in
the interval < qi, τ >. Therefore, each state in the automaton corresponds to a
unique linear dynamical system in the second layer; that is, qi denotes the label
of the corresponding linear dynamical system as well as a state in the automa-
ton. Note that multiple different intervals can correspond to the same state in
the automaton (i.e., their dynamics are described by the same linear dynamical
system).

Signal Generation and Segmentation

An interval system is a stochastic generative model. Once the interval system
has been constructed by learning as will be described in Chapter 3, it can gen-
erate a multivariate signal sequence by activating the automaton. The activated
automaton first generates a sequence of intervals (the middle of Figure 2.1), each
of which then generates a signal sequence based on its corresponding linear dy-
namical system (the second bottom of Figure 2.1). Note that the activation timing
and period of the linear dynamical system are controlled by the duration length
of the interval.

When a temporal sequence of observed signal data (multivariate sequence) is
given, the system finds the activation timing and period of the linear dynamical
systems based on the likelihood calculation. That is, the observed sequence is
partitioned into a group of sub-sequences so that the dynamic signal variation
in each sub-sequence can be described by a linear dynamical system, which is
denoted by the discrete-state label of the interval covering that sub-sequence (see
Section 2.4 for details). As a result, the observation sequence is transformed into
a sequence of internal states that is partitioned by an interval sequence.

Notations

We define some terms and notations for later discussions. Firstly, we simply use
the term “dynamical systems” to denote linear dynamical systems.

Internal state. All the constituent dynamical systems are assumed to share an
n-dimensional internal state space. Each activated dynamical system can
generate sequences of real valued internal state vector x ∈ Rn, which can be
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Figure 2.1: Interval-based hybrid dynamical system and the generation of a mul-
tivariate sequence.
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2. Interval-Based Hybrid Dynamical System

mapped onto the observation space by a linear function. We assume such
linear transformation function is also shared by all the dynamical systems.

Observation. An observation sequence is described by a multivariate vector y ∈
Rm sequence in a m-dimensional observation space.

Discrete state. The finite state automaton has a discrete state set Q = {q1, ..., qN}.
Each state qi ∈ Q corresponds to the dynamical system Di, respectively.

Duration lengths of intervals. The duration length that an interval continues
described by a positive integer because we assume the interval system as
a discrete time model. To reduce parameter size, we set a minimum dura-
tion length lmin and a maximum duration length lmax; we define a duration
length as τ ∈ T , {lmin, ..., lmax}.

Interval. An interval generated by the automaton is defined as a combination of
a discrete state and a duration length. We use notation < qi, τ >∈ Q× T to
represent the interval that has state qi and duration τ.

2.2 Linear Dynamical Systems

2.2.1 Formulation

The state transition of dynamical system Di in the internal state space, and the
mapping from the internal state space to the observation space is modeled as the
following linear equations:

xt = F(i)xt−1 + g(i) + ω
(i)
t (2.1)

yt = Hxt + υt,

where F(i) is a transition matrix and g(i) is a bias vector. H is an observation ma-
trix that defines linear projection from the internal state space to the observation
space. ω(i) and υ is the process noise and the observation noise. Note that each
dynamical system has F(i), g(i), and ω

(i)
t individually. We assume each of noise

term ω(i) and υ has Gaussian distributionNxt(0, Q(i)) andNyt(0, R), respectively.
Here, we use the notation Nx(a, B) to denote a Gaussian distribution that has
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2.2. Linear Dynamical Systems

average vector a and covariance matrix B in the space of variable x:

Nx(a, B) = (2π)−n/2|B|−1/2 exp
{
−1

2
(x− a)⊤B−1(x− a)

}
, (2.2)

where n is a dimension of vector x.

We assumed that all the dynamical systems share a single internal state space.
The main reason is that we want to reduce parameters in the interval system; it
is, however, possible to design the system with an individual internal state space
for each dynamical system. In such cases, observation parameters H(i) and R(i)

are required for each dynamical system. Although they provide more flexibility
in models, a large parameter space causes problems such as over-fitting and high
computational costs.

Probability Density Distributions

Using the formulation and notation mentioned above, we can consider probabil-
ity density distribution as follows:

p(xt|xt−1, st = qi) = Nxt(F(i)xt−1 + g(i), Q(i))
p(yt|xt, st = qi) = Nyt(Hxt, R),

(2.3)

where the probability variable st is an activated discrete state at time t (i.e., dy-
namical system Di is activated). The second equation is independent of the prob-
ability variable st because of the assumption in the previous paragraph. In this
thesis, we use p to denote probability density function and P for probability.

Since the state distribution is recursively calculated by the density distribu-
tions above, we define the initial state distribution as follows:

p(x1|, s1 = qi) = Nx1(x(i)
init, V(i)

init). (2.4)

2.2.2 Class of Linear Dynamical Systems

The class of linear dynamical systems can be categorized by the eigenvalues of
the transition matrix, which determine the zero-input response of the system. In
other word, these eigenvalues determine the behavior of generable time-varying
patterns (trajectories) in the state space.
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2. Interval-Based Hybrid Dynamical System

Without Bias Term

To concentrate on the temporal evolution of the state in the dynamical system, let
us assume the bias and the process noise term is zero in Equation (2.1). Using the
eigenvalue decomposition of the transition matrix:

F = EΛE−1 = [e1, ..., en]diag(λ1, ..., λn)[e1, ..., en]−1,

we can solve the state at time t with initial condition x0:

xt = Ftx0 = (EΛE−1)tx0 = EΛtE−1x0 =
n

∑
p=1

αpepλt
p, (2.5)

where ep and λp is a corresponding eigenvalue and eigenvector pair. We omit the
indices i for simplification. A weight value αp is determined from the initial state
x0 by calculating [α1, ..., αn]⊤ = E−1x0.

Hence, the generable patterns from the system can be categorized by the po-
sition of the eigenvalues (poles) λ1, ..., λn on the complex plane. Especially, the
arguments (angle) of eigenvalues in a complex plain determine the state will os-
cillate or not:

• At least one negative or complex eigenvalue exists→ oscillating.

• All the eigenvalues have real number→ non-oscillating.

On the other hand, the absolute values of eigenvalues determine the state will
converge or not:

• At least one absolute value of eigenvalue exceeds one→ diverging.

• All the absolute values of eigenvalues are smaller than one→ converging.

Figure 2.2 shows examples of state trajectories when the dimensionality of the
state is two.

For instance, the system can generate time-varying patterns that converge to
zero if and only if |λp| < 1 for all 1 ≤ p ≤ n (using the term in control theory,
we can say that the system is stable); meanwhile, the system can generate non-
monotonic or cyclic patterns if the imaginary parts of eigenvalues have nonzero
values.
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|λ1| < 1 and |λ2| < 1 |λ1| > 1 and |λ2| > 1 |λ1| > 1 and |λ2| < 1
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Figure 2.2: Examples of dynamics class when the dimensionality of the state is
two.

With Bias Term

We first consider the dynamical system has converging behavior. In case that the
system equation has bias vector g as shown in Equation (2.1), the state converges
to a certain position xconv in the state space. We can calculate state xconv using a
similar method to linear type recurrence equations.

Let us assume that the process is not stochastic but deterministic (i.e., noise
term is zero) same as the previous paragraph. Substituting xconv for xt and xt−1

in Equation (2.1), we get the following equation:

xconv = Fxconv + g. (2.6)

From the equation above, the convergence point becomes:

xconv = (I − F)−1g. (2.7)

Calculating subtraction of each term between original Equation (2.1) and Equa-
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2. Interval-Based Hybrid Dynamical System

tion (2.6), we get the following equation:

xt − xconv = F(xt−1 − xconv)

= Ft(x0 − xconv) (2.8)

Here, the Equation (2.8) determine the temporal evolution of the state when the
state converges to xconv. From Equation (2.7) and Equation (2.8), we get

xt = Ftx0 + (I − Ft)(I − F)−1g (2.9)

= EΛtE−1x0 + E(I −Λ)−1(I −Λt)E−1g.

In general case (i.e., the state might diverge), we can recursively apply the
Equation (2.1) and get the following equation:

xt = Fxt−1 + g = F(Fxt−2 + g) + g

= Ftx0 + (
t−1

∑
u=1

Fu)g (2.10)

Substituting ∑t−1
u=1 Fu = (I − Ft)(I − F)−1 for the second term of the equation

above, we get the same equation as Equation (2.9). Thus, the Equation (2.9) is a
general (i.e., independent of eigenvalues) equation for the temporal evolution of
the state. We can easily deduce Equation (2.7) from Equation (2.9) as a special
case when limt→∞ Ft = O (i.e., all the eigenvalues are smaller than one).

2.2.3 Probabilistic State Inference

In this section, we show the probabilistic inference of the internal state in linear
dynamical systems. Let us assume that the internal state has a Gaussian distri-
bution at each time points. Then, the transition of the internal state becomes a
Gauss-Markov process, which is inferable in the same manner as Kalman filter-
ing [AM79].

The inference consists of the following two steps:

1. Prediction step

2. Observation (Correction) step

In the next two paragraphs, we describe each of the steps.

36



2.2. Linear Dynamical Systems

Prediction Step

Because we assumed that the probability density of the internal state is a Gaussian
distribution, the state distribution of time t− 1 under the condition of observation
from 1 to t− 1 is represented by the following equation:

p(xt−1|yt−1
1 = ŷt−1

1 , st−1 = qi) = Nxt−1(x(i)
t−1|t−1, V(i)

t−1|t−1), (2.11)

where x(i)
t−1|t−1 is a mean vector and V(i)

t−1|t−1 is a covariance matrix, and ŷt−1
1 =

ŷ1, ..., ŷt−1 is an observation sequence from 1 to t− 1.

Using Equation (2.3) and (2.11), we can calculate the predicted state distribu-
tion under the condition of observations from 1 to t− 1 as follows:

p(xt|yt−1
1 = ŷt−1

1 , st = qi) =
∫

xt−1

p(xt|xt−1, st = qi)p(xt−1|yt−1
1 = ŷt−1

1 , st−1 = qi)

=
∫

xt−1

Nxt(F(i)xt−1 + g(i), Q(i))Nxt−1(x(i)
t−1|t−1, V(i)

t−1|t−1)

= Nxt(x(i)
t|t−1, V(i)

t|t−1), (2.12)

where

 x(i)
t|t−1 = F(i)x(i)

t−1|t−1 + g(i)

V(i)
t|t−1 = F(i)V(i)

t−1|t−1F(i)⊤ + Q(i)

We can also calculate the predicted observation distribution using the predicted
state distribution and Equation (2.3):

p(yt|yt−1
1 , st = qi) =

∫
xt

p(yt|xt, st = qi)p(xt|yt−1
1 , st = qi)

=
∫

xt
Nyt(Hxt, R)Nxt(x(i)

t|t−1, V(i)
t|t−1)

= Nyt(y(i)
t|t−1, M(i)

t|t−1), (2.13)

where

 y(i)
t|t−1 = Hx(i)

t|t−1

M(i)
t|t−1 = HV(i)

t|t−1H⊤ + R

Observation Step

After the prediction step in the previous paragraph, the state distribution at time t
can be calculated once the observation data yt becomes available. Using Bayesian
rule with Equation (2.3), (2.12), and (2.13), we can update the state distribution at
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2. Interval-Based Hybrid Dynamical System

time t under the condition of observations from time 1 to t as follows:

p(xt|yt
1 = ŷt

1, st = qi) =
p(yt|xt)p(xt|yt−1

1 = ŷt−1
1 , st = qi)

p(yt|yt−1
1 = ŷt−1

1 , st = qi)

=
Nyt(Hxt, R)|yt=ŷtNx(x(i)

t|t−1, V(i)
t|t−1)

Nyt(y(i)
t|t−1, M(i)

t|t−1)|yt=ŷt

= Nxt(x(i)
t|t , V(i)

t|t ) (2.14)

where



x(i)
t|t = x(i)

t|t−1 + K(i)
t (ŷt − y(i)

t|t−1)

V(i)
t|t = (V(i)

t|t−1

−1
+ H⊤R−1H)−1

= (I − K(i)
t H)V(i)

t|t−1

K(i)
t = V(i)

t|t H⊤R−1

Hence, the mean vectors x(i)
t|t−1, x(i)

t|t , y and covariance matrices V(i)
t|t−1, V(i)

t|t are
updated every sampled time t using the prediction and observation steps by
turns.

2.2.4 Likelihood Calculation of the Linear Dynamical System

Now, we show how to calculate the likelihood of a linear dynamical system with
respect to the observation sequence in an interval.

Suppose that the dynamical system Di represents an observation sequence
ŷt

t−τ+1 , ŷt−τ+1, ..., ŷt in the interval < qi, τ >, which has a duration length τ.
Then, the likelihood score of the system Di with respect to the observation se-
quence ŷt

t−τ+1 is calculated by the following equation:

d(i)
[t−τ+1,t] , P(yt

t−τ+1 = ŷt
t−τ+1| < qj, τ >)

=
t

∏
t′=t−τ+1

γm p(yt′ = ŷt′ |yt′−1
t−τ+1 = ŷt′−1

t−τ+1, st′ = qj), (2.15)

where we assume Gaussian distribution N(x(i)
init, V(i)

init) for the initial state
distribution in the interval as we described in Subsection 2.2.1 (see Equa-
tion (2.4)); that is, we substitute p(yt′ = ŷt′ | yt′−1

t−τ+1 = ŷt′−1
t−τ+1, st′ = qj) with

Ny′t
(Hx(i)

init, HV(i)
initH

⊤ + R) when t′ = t − τ + 1. On the other hand, γm is a
volume size of observations in the observation space to convert probability den-
sity values to probabilities. m is the dimensionality of observation vectors. γ is
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2.3. Interval-Based State Transitions of the Automaton

assumed to be provided manually based on the size of the observation space (the
range of each element in observation vectors). This likelihood score is used in Sec-
tion 2.4 to evaluate the fitting of linear dynamical system to the given multivariate
sequences.

Substituting Equation (2.13) into Equation (2.15), we finally get the likelihood
of linear dynamical system Di under the assumption of the Gauss-Markov pro-
cess:

d(i)
[t−τ+1,t] =

t

∏
t′=t−τ+1

γmNyt′ (y(i)
t′|t′−1, M(i)

t′|t′−1)|yt′=ŷt′

=
γm

(2π)m/2

t

∏
t′=t−τ+1

|M(i)
t′|t′−1|

−1/2 exp
{
−1

2
(ŷt′ − y(i)

t′|t′−1)
⊤M(i)−1

t′|t′−1(ŷt′ − y(i)
t′|t′−1)

}

= exp

{
τm log

γ√
2π
− 1

2

t

∑
t′=t−τ+1

(
log |M(i)

t′|t′−1|+ e⊤t′ M
(i)−1
t′|t′−1et′

)}
,

where et′ = ŷt′ − y(i)
t′|t′−1. (2.16)

Note that we use y(i)
t′|t′−1 = Hx(i)

init and M(i)
t′|t′−1 = HV(i)

initH
⊤ + R for the initial

distribution parameters at t′ = t− τ + 1.

2.3 Interval-Based State Transitions of the Automa-

ton

2.3.1 Interval-Based State Transition

In this section, we define transition of discrete states in the automaton that gen-
erate interval sequences. Here, we assume the first-order Markov property for
the generated intervals. The difference from conventional state transition mod-
els, such as hidden Markov models, is that the automaton models not only the
transition of discrete states but also the correlation between the adjacent interval
duration lengths.

Let I = I1, ..., IK be an interval sequence generated by the automaton. To
simply the model, we assume that the adjacent intervals have no temporal gaps or
overlaps. Here, the interval Ik depends on only the previous interval Ik−1 because
of the Markov property assumption. Then, the Markov process of intervals can
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Figure 2.3: First-order Markov property is assumed for a sequence of intervals.

be modeled by the following conditional probability:

P(Ik =< qj, τ > |Ik−1 =< qi, τp >),

where it denotes that the interval < qj, τ > occurs after the interval < qi, τp >

(see Figure 2.3).

The probability P(Ik =< qj, τ > |Ik−1 =< qi, τp >) requires a large parameter
set, which cause not only computational costs but also the problem of over-fitting
during a training phase. We therefore use a parametric model for the duration-
length distribution:

h(ij)(lk, lk−1) , P(lk, lk−1|sk = qj, sk−1 = qi), (2.17)

where the two-dimensional distribution models a joint probability density func-
tion of duration lengths in adjacent interval pairs that has state qi and qj in this
order. sk and lk is a probability variable of the discrete state and the duration
length in the interval Ik, respectively.

We can assume an arbitrary density function as h(ij)(lk, lk−1). For conve-
nience, we use a two-dimensional Gaussian distribution normalized in the range
of [lmin, lmax], as shown in the top right in Figure 2.3; thus, the parameter set of the
function h(ij)(lk, lk−1) becomes {h(i)

m , h(i)
v , h(ij)

c }, where h(i)
m and h(i)

v denotes mean
and variance of duration lengths in discrete state qi, and h(ij)

c denotes covariance
between the adjacent duration lengths in discrete-state sequences qiqj (i ̸= j).
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2.3. Interval-Based State Transitions of the Automaton

Using the above notations and assuming that the current discrete state is in-
dependent on the duration of the previous interval, we can calculate the interval
transition probability as follows:

P(Ik =< qj, τ > |Ik−1 =< qi, τp >) = P(lk = τ|sk = qj, sk−1 = qi, lk−1 = τp)

×P(sk = qj|sk−1 = qi)

= ĥ(ij)(τ, τp)Aij, (2.18)

where ĥ(ij)(lk, lk−1) is a one-dimensional Gaussian distribution:

ĥ(ij)(lk, lk−1) , P(lk|sk = qj, sk−1 = qi, lk−1)

=
h(ij)(lk, lk−1)

∑lk−1
h(ij)(lk, lk−1)

,

and Aij is a discrete-state transition probability:

Aij , P(sk = qj|sk−1 = qi), (2.19)

where i ̸= j.

Note that, in the conventional discrete state models such as HMMs and SLDSs,
the diagonal elements of the matrix [Aij] define the probabilities of the self loops.
In the interval system, on the other hand, the diagonal elements are separated
from the matrix and defined as duration-length distributions. As a result, the
balance between diagonal and non-diagonal elements varies due to the current
state duration.

2.3.2 Probabilistic Inference of the Intervals

Now, we describe how to inference the intervals (i.e., states and duration lengths)
based on the interval-based state transition. Unlike conventional (i.e., frame-wise)
discrete state inference, we have to consider two different temporal representa-
tion: the order of intervals k and time t at the same time. As shown in the follow-
ing paragraphs, the probabilistic inference becomes recursive calculation based
on time t.

Let us consider how to calculate all the probabilities of every possible inter-
val when the parameters of the automaton are given. Because we assumed the
first-order Markov property, the probability of the interval < qj, τ > can be cal-
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culated using all the possible intervals that have occurred just before the interval
< qj, τ >:

P(Ik =< qj, τ >)

= ∑
<qi,τp>∈Q×T

P(Ik =< qj, τ > |Ik−1 =< qi, τp >)P(Ik−1 =< qi, τp >),

(2.20)

where the summation for < qi, τp > does not include qj (i.e., there are no self
loops such as qj → qj).

Although this equation gives us general idea of the inference algorithm, this
recursion is based on the temporal order of intervals k, and we need to map all
the intervals to the physical time line. Here, we introduce a variable ft that takes
one of the binary values {0, 1}. If ft = 1, it denotes the interval “finishes” at
time t, which follows Murphy’s notation that is used in a research note about
segment models [Mur02]. Using this notation, we can rewrite Equation (2.20) as
the following time-based equation:

P(st = qj, lt = τ, ft = 1)

= ∑
i(i ̸=j)

∑
τp

{
P(st = qj, lt = τ, ft = 1|st−τ = qi, lt−τ = τp, ft−τ = 1)

×P(st−τ = qi, lt−τ = τp, ft−τ = 1)
}

, (2.21)

where

P(st = qj, lt = τ, ft = 1|st−τ = qi, lt−τ = τp, ft−τ = 1)

= P(Ik =< qj, τ > |Ik−1 =< qi, τp >). (2.22)

If we assume a finite length for the generated sequence, let the length be T, the
probability ∑j ∑τ P(st = qj, lt = τ, ft = 1) = P( ft = 1) becomes 1 at the final time
point t = T.

Approximation (assuming the independence of the previous duration length)

If we can approximate that the interval probability is independent of the duration
length of the previous interval, we can use the following equation as substitute
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for Equation (2.22):

P(st = qj, ft = 1) = ∑
τ

P(st = qj, lt = τ, ft = 1)

= ∑
τ

∑
i(i ̸=j)

P(st = qj, lt = τ, ft = 1|st−τ = qi, ft−τ = 1)P(st−τ = qi, ft−τ = 1).

(2.23)

Example (Interval lattice)

Figure 2.4 shows an intuitive example of this recursive calculation when the total
sequence length is four. In this example, the number of states is two (e.g., q1 and
q2), we can therefore omit state transition probability A12 = A21 = 1. The initial
state is q1 or q2, and the succeeding intervals are labeled by these two states by
turns. To simplify the example, we assume the following duration-length distri-
bution (not a Gaussian):

ĥ(ij)(lk = 1, lk−1) = 1/2, ĥ(ij)(lk = 2, lk−1) = 1/4,
ĥ(ij)(lk = 3, lk−1) = 1/8, ĥ(ij)(lk = 4, lk−1) = 1/8,

where the distribution is independent of lk−1. Therefore, this is an example of
Equation (2.23).

The arrow that has beginning point at (time t, length τ) represents the state q1

(or q2) continues or finishes at time t with duration length τ. Four circle nodes
at the bottom (except the leftmost node) represent P( ft = 1) = ∑2

j=1 ∑4
τ=1 P(st =

qj, lt = τ, ft = 1)(t = 1, 2, 3, 4), and one of the path from the leftmost circle to
the rightmost circle determines an interval sequence (partitioned sequence). For
example, the bottom path represents that all the comprising intervals have length
1, and the indices of the intervals therefore correspond to time points (i.e., k = t).

Each node has multiple input from other nodes, which corresponds to the
summation over duration length τ in Equation (2.23). We see that P( f4 = 1) takes
1 because all the possible interval sequences finish at the final time point t = 4.
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Figure 2.4: Interval lattice and examples of the generated interval sequences
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2.4 Inference of the Interval-Based Hybrid Dynami-

cal System

This section describes a probabilistic inference method that searches the optimal
interval sequence to represents an input multivariate sequence. The method as-
sumes that the interval system have been trained beforehand.

As we will see in the following paragraphs, the inference method recursively
finds the intervals that provide the highest likelihood score with respect to the
input. This is done by generating all the possible intervals and by selecting the
optimal interval sets at every time t based on a dynamic programming technique.
As a result, the input sequence is partitioned and labeled by discrete states that
determine the most likely dynamical system to represent a multivariate sequence
in each interval. In other words, the inference is a model fitting process that fits
intervals to the given multivariate sequences.

The likelihood of the trained model with respect to the input sequence is ob-
tained simultaneously as the score of the fitting precision. This inference process
is required in the EM algorithm of the interval system identification as we will
see in Section 3.4.

2.4.1 Forward Algorithm

The most naive method for the interval-sequence search is that first calculates the
likelihood scores of the model from all the possible interval sequences indepen-
dently, and then finds the best interval sequence that provides the largest like-
lihood. However, the computational cost becomes order of O(NT) in this case.
To avoid unnecessary calculation, we exploit a recursive calculation similar to
HMMs.

Let us first consider the forward algorithm of the interval system. Suppose
that input multivariate data y have been observed from time 1 to t, and the in-
terval Ik =< qj, τ > ends at time t. Considering all the possible intervals that
have occurred just before the interval Ik, we can decompose the joint probability
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P(Ik =< qj, τ >, yt
1) as the following recursive equation:

P(Ik =< qj, τ >, yek
1 )

= P(yek
ek−1+1|Ik =< qj, τ >)

× ∑
<qi,τp>∈Q×T

{
P(Ik =< qj, τ > |Ik−1 =< qi, τp >)P(Ik−1 =< qi, τp >, yek−1

1 )
}

where ek and ek−1 are the ending points of interval Ik and Ik−1, respectively, and
ek = t.

As we described in Subsection 2.3.2, this recursion is based on the interval
order, and is difficult to cope with observation data that comes every time point t.
We therefore rewrite this equation as the following time-based recursion, which
is similar to Equation (2.22) rewritten from Equation (2.22):

P(st = qj, lt = τ, ft = 1, yt
1)

= P(yt
t−τ+1|st = qj, lt = τ, ft = 1)

× ∑
i(i ̸=j)

∑
τp

{
P(st = qj, lt = τ, ft = 1|st−τ = qi, lt−τ = τp, ft−τ = 1)

× P(st−τ = qi, lt−τ = τp, ft−τ = 1, yt−τ
1 )

}
(2.24)

To initialize the forward algorithm, we have to calculate the probability of the
interval that appears at the first time in each interval sequence.

P(st = qj, lt = τ, ft = 1, f t−1
1 = 0, yt

1)

= P(yt
1|st = qj, lt = t)P(st = qj)P(lt = t|st = qj) (2.25)

The duration length probability P(lt|st = qj) can be calculated by the following
equation:

ĥ(j)(lt) , P(lt = τ|st = qj) = ∑
i

∑
lk−1

P(lt, lk−1|sk = qj, sk−1 = qi)

= ∑
i

∑
lk−1

h(ij)(lk, lk−1). (2.26)

Here, we show the overall forward algorithm in Algorithm 1, where we use
the following notation:

αt(i, τ) , P(st = qi, lt = τ, ft = 1, yt
1).
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We also use the notation d(i)
[t−τ+1,t] for P(yt

t−τ+1|st = qi, lt = τ, ft = 1), which we

defined in Equation (2.15). As we have shown in Section 2.2, d(i)
[t−τ+1,t] denotes the

likelihood of the linear dynamical system Di with respect to the observation from
t − τ + 1 to t, and can be calculated by using parameters of dynamical system
Di. On the other hand, the interval transition probability P(st = qj, lt = τ, ft =
1|st−τ = qi, lt−τ = τp, ft−τ = 1) can be calculated by Equation (2.18) in Section 2.3.

Algorithm 1 Forward Algorithm
for t← 1 to lmin − 1 do

Fill αt(i, τ) by 0
end for
for t← lmin to T do

τmax ← min(lmax, t− lmin)
for j← 1 to N do

for τ ← lmin to τmax do
τp max ← min(lmax, t− τ)
αt(j, τ)← d(j)

[t−τ+1,t] ∑i ∑
τp max
τp=lmin

Aijĥ(ij)(τ, τp)αt−τ(i, τp) # Eq. (2.24)
end for
if t ≤ lmax then

αt(j, t)← d(j)
[1,t]π(j)ĥ(j)(t) # Initialization (Eq. (2.25))

end if
end for

end for

Approximated Forward Algorithm

Assuming that the duration-length distribution is independent of the duration
length of the previous interval, we can use the following recursive equation,
which is deduced from Equation (2.23), on instead of Equation (2.24):

P(st = qj, ft = 1, yt
1)

= ∑
τ

P(yt
t−τ+1|st = qj, lt = τ, ft = 1)

× ∑
i(i ̸=j)
{P(st = qj, lt = τ, ft = 1|st−τ = qi, ft−τ = 1, yt−τ

1 )

×P(st−τ = qi, ft−τ = 1, yt−τ
1 )} (2.27)

In precise, the above equation calculates P(st = qj, ft = 1, yt
1), where one of f1

to ft−1 is 1. Therefore, we also require the probability of the interval that appears
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at the first time in each interval sequence: P(st = qj, ft = 1, f t−1
1 = 0, yt

1). Then,
we have to add to this probability to Equation (2.27), when t is not grater than the
maximum interval length lmax.

Here, we can use the following relation:

P(st = qj, ft = 1, f t−1
1 = 0, yt

1) = P(st = qj, ft = 1, lt = t, yt
1),

because lt = t implicitly denotes that the interval does not finish from time 1 to
t − 1. Therefore, the initialization becomes exactly the same equation as Equa-
tion (2.25).

The overall forward algorithm becomes Algorithm 2, where we use the fol-
lowing notation:

αt(i) , P(st = qi, ft = 1, yt
1).

Algorithm 2 Forward Algorithm (assuming the independence of previous dur.)
for t← 1 to lmin − 1 do

Fill αt(i) by 0
end for
for t← lmin to T do

τmax ← min(lmax, t− lmin)
for j← 1 to N do

αt(j)← ∑τmax
τ=lmin

d(j)
[t−τ+1,t] ∑i Aijĥ(j)(τ)αt−τ(i) # Equation (2.27)

if t ≤ lmax then
αt(j)← αt(j)+d(j)

[1,t]π(j)ĥ(j)(t)
end if

end for
end for

2.4.2 Viterbi Algorithm

The forward algorithm often causes numerical underflow when the length of the
input becomes longer. That is, at each step of the recursion in Equation (2.24), the
probability such as αt(j, τ) becomes smaller than the previous probability, and
finally the probabilities get below the machine epsilon.

In the following paragraphs, we describe the Viterbi algorithm in which we
can take logarithm of the formulation to avoid the numerical underflow prob-
lem. Although this algorithm returns only the most likely interval sequence, it
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is enough information for some applications. For instance, we use this Viterbi
algorithm to train the interval system, as we see in Chapter 3.

This algorithm is based on a dynamic programming method similar to the
Viterbi algorithm of HMMs without that it requires the consideration of duration
lengths. Suppose that the algorithm have found the optimum interval sequence
from time 1 to t− τ − τp that maximize probability P(st−τ = qi, lt−τ = τp, ft−τ =
1, yt−τ

1 ). Let use the following notation for this maximized probability:

δt−τ(i, τp) , max
s

t−τ−τp
1

P(st−τ−τp
1 , st−τ = qi, lt−τ = τp, ft−τ = 1, yt−τ

1 ). (2.28)

Then, we can calculate probability δt(j, τ) based on the following equation,
which can be deduced from Equation (2.24).

δt(j, τ) = max
st−τ

1

P(st−τ
1 , st = qj, lt = τ, ft = 1, yt

1)

= P(yt
t−τ+1|st = qj, lt = τ, ft = 1)

× max
i(i ̸=j),τp

{P(st = qj, lt = τ, ft = 1|st−τ = qi, lt−τ = τp, ft−τ = 1)δt−τ(i, τp)}.

(2.29)

Since this recursive calculation gives us the maximum probabilities of all the
time points with possible states and duration lengths, we can get the most likely
interval sequence using traceback of arguments (i.e., states and duration lengths)
that gives the maximized probabilities at each recursion step. We therefore need
to record the following arguments together with δt(j, τ) at the maximization of
Equation (2.29):

(s∗t (j, τ), l∗t (j, τ))

= arg max
i(i ̸=j),τp

{P(st = qj, lt = τ, ft = 1|st−τ = qi, lt−τ = τp, ft−τ = 1)δt−τ(i, τp)}.

Traceback

Now, we describe a traceback algorithm for searching the most likely interval
sequence. Using Equation (2.29) recursively, we get the maximized probability at
final time point (t = T)

max
sT−τ

1

P(sT−τ
1 , sT = qj, lT = τ, fT = 1, yt

1) = δT(j, τ). (2.30)
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Here, we can find the state and duration length of the most likely interval se-
quence by finding the maximum probability of δT(j, τ):

(csK, clK) = arg max
j,τ

δT(j, τ). (2.31)

Then, we the most likely interval sequence by calculating the following recursion:

csk−1 = s∗cek
(csk, clk), clk−1 = l∗cek

(csk, clk)

cek−1 = cek − clk,

where cek is the ending point of interval k, which is initialized by ceK = T, csk

and clk is the state and duration length of interval k. Finally, we get intervals
< csk, clk > (k ≤ K) that comprise the most likelihood interval sequence. Note
that the total number of intervals (K) is known. In the actual algorithm, we there-
fore use very large integer for K, or use increment of the indices on behalf decre-
menting index k.

Taking logarithm of all the equations, we get the overall algorithm shown in
Algorithm 3.

Approximated Viterbi Algorithm

Assuming that the duration-length distribution is independent of the duration
length of the previous interval, we can use the following recursive equation,
which is deduced from Equation (2.27), instead of Equation (2.29):

δt(j) , max
st−1

1

P(st−1
1 , st = qj, ft = 1, yt

1)

= max
τ

[P(yt
t−τ+1|st = qj, lt = τ, ft = 1)

×max
i(i ̸=j)
{P(st = qj, lt = τ, ft = 1|st−τ = qi, ft−τ = 1) max

ut−τ−1
1

δt−τ(i)}]

The overall algorithm is shown in Algorithm 4. As we described in the previous
paragraph, the most likely interval sequence is given by the final traceback step.
The difference from Algorithm 3 is that this approximated model does not require
to recording maximized probabilities for the previous duration length.

50



2.4. Inference of the Interval-Based Hybrid Dynamical System

Algorithm 3 Viterbi Algorithm
for t← 1 to lmin − 1 do

Fill log δt(i, τ) by −∞
end for
for t← lmin to T do

τmax ← min(lmax, t− lmin)
for j← 1 to N do

for τ ← lmin to τmax do
τp max ← min(lmax, t− τ)

log δt(j, τ)← log d(j)
[t−τ+1,t] + maxi,τp

[
log Aij + log ĥ(ij)(τ, τp) + log δt−τ(i, τp)

]
(s∗t (j, τ), l∗t (j, τ))← arg maxi,τp

[
log Aij + log ĥ(ij)(τ, τp) + log δt−τ(i, τp)

]
# i ∈ {1, ..., N}, τp ∈ {lmin, ..., τp max}

end for
if t ≤ lmax then

log δt(j, t)← log d(j)
[1,t] + log π(j) + log ĥ(j)(t)

(s∗t (j, t), l∗t (j, t))← (0, 0)
end if

end for
end for
# Traceback
ceK ← T
(csK, clK)← arg maxj,τ log δT(j, τ)
while csk > 0 do

csk−1 ← s∗cek
(csk, clk), clk−1 ← l∗cek

(csk, clk)
cek−1 ← cek − clk
k← k− 1

end while
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Algorithm 4 Viterbi Algorithm (assuming the independence of previous dur.)
for t← 1 to lmin − 1 do

Fill log δt(i) by −∞
end for
for t← lmin to T do

τmax ← min(lmax, t− lmin)
for j← 1 to N do

log δt(j)← maxi,τ

[
log d(j)

[t−τ+1,t] + log Aij + log ĥ(j)(τ) + log δt−τ(i)
]

(s∗t (j), l∗t (j))← arg maxi,τ

[
log d(j)

[t−τ+1,t] + log Aij + log ĥ(j)(τ) + log δt−τ(i)
]

# i = (1, ..., N), τ = (lmin, ..., τmax)
if t ≤ lmax then

log δ′t(j)← log d(j)
[1,t] + log π(j) + log ĥ(j)(t)

if log δt(j) < log δ′t(j) then
log δt(j)← log δ′t(j), s(∗)

t (j)← 0, l(∗)t (j)← t
end if

end if
end for

end for
# Traceback
ceK ← T
csK ← arg maxj log δT(j)
k← K
while csk > 0 do

clk ← l∗cek
(csk), csk−1 ← s∗cek

(csk)
cek−1 ← cek − clk
k← k− 1

end while
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2.4.3 Calculation Cost

The forward and Viterbi algorithms require searching all the possible intervals
for all the current intervals at every sampled time t. Therefore, the computational
cost becomes O((NL)2T) (L = lmax− lmin + 1), which requires a greater cost com-
pared to HMMs, which requires only O(N2T). However, the cost can be reduced
drastically in the case that the range L is small.

Approximated forward and Viterbi algorithms, which assume the indepen-
dence of the previous interval duration length, requires computational cost
O(N2LT).

In addition, if we calculate likelihood of dynamical systems (i.e., Equa-
tion (2.15)) before the recursive calculation, the actual cost can be also reduced.

2.5 Verification of the Inference Algorithms

In this section, we verify the capability of the interval system and the validity of
the proposed inference algorithms (i.e., the forward and Viterbi algorithms).

First, the parameters of an interval system were given manually, and interval
sequences were generated by the system for test data. Then, the data was used as
input of the forward and Viterbi algorithms.

To concentrate on the interval-based state transition in the interval system,
we set the observation matrix H = I (unit matrix) and the observation noise
covariance R = O (zero matrix). The number of discrete states was N = 3 and
the dimensionality of the internal state space was n = 3. The range of the interval
duration was [lmin = 1, lmax = 30]. We set the probability matrix of the discrete-
state transition as A12 = A23 = A31 = 1 and 0 for all the other elements to
generate loops such as q1 → q2 → q3 → q1. The initial distribution of the discrete
state was 1 for q1 and 0 for the remaining states q2 and q3.

The two dimensional distribution of the duration length h(ij)(lk, lk−1) had
{mean (h(i)

m ), variance (h(i)
v )} of {6, 5}, {12, 30} and {16, 50} for q1, q2, and q3, respec-

tively. The covariance (h(ij)
c ) between the pairs of {q1, q2}, {q2, q3} and {q3, q1}

was 12, 35 and 15, respectively. These covariances were designed to generate in-
terval sequences that the duration lengths of the intervals were monotonically
increased in the sequence of q1, q2, and q3.

The transition matrices, bias vectors, and initial mean vectors of the dynamical
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systems were as follows:

F(1) =

[
0.6 −0.1
−0.1 0.2

]
, g(1) =

[
0.2
0.8

]
, x(1)

init =

[
1.0
−1.0

]

F(2) =

[
0.3 0.0
0.0 0.6

]
, g(2) =

[
−0.7
0.0

]
, x(2)

init =

[
0.3
1.0

]

F(3) =

[
0.5 0.1
−0.1 0.3

]
, g(3) =

[
0.6
−0.6

]
, x(3)

init =

[
−1.0
0.0

]
The process noise covariance matrices Q(i) (i = 1, 2, 3) and the covariance matri-
ces V(i)

init (i = 1, 2, 3) of the initial state distribution were set to zero in the gener-
ation step, and was set to 0.001I (where I is a unit matrix) in the fitting step of
intervals.

Figure 2.5(a) shows a generated interval sequence from the finite state automa-
ton. The length of the sequence was T = 100．We see that the duration of the
intervals increases monotonically in the sequence of q1, q2, and q3 because we set
positive correlation between the adjacent intervals (i.e., q1 to q2 and q2 to q3).

In parallel of this discrete-state transition, each dynamical system was acti-
vated by the discrete state, and generates a sequence of signal. Figure 2.5(b)
shows a generated observation sequence. In this experiment, this sequence corre-
sponds to the generated internal state sequence as a result of observation param-
eters H = I and R = O. We see that the time-varying pattern of the observation
changes based on the transition of the intervals.

To verify the algorithms of forward and Viterbi inference, we input a gen-
erated sequence shown in Figure 2.5(b) to the original interval system (i.e., the
system that generated the input sequence). Figure 2.5 (c) shows the result of the
forward inference. Each line denotes the following probabilities of the discrete
states under the condition of observations from time 1 to t:

P(st = qj|yt
1) =

∑τ P(It =< qj, τ >, yt
1)

P(yt
1)

Figure 2.5 (d) shows the result of backtracked intervals after the Viterbi algorithm.
We see that both of the forward and Viterbi inferences have found optimal inter-
val sequences that are consistent with the original interval sequence in Figure 2.5
(a).
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(a) Generated interval sequence

(b) Generated two-dimensional observation sequence

(c) The result of the forward inference

(d) Traced-back interval sequence after the viterbi inference
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Figure 2.5: Verification of the forward and Viterbi algorithms. (a) A generated
interval sequence by a finite state automaton. (b) A generated obser-
vation sequence by three dynamical systems using interval sequence
of (a). The solid line denotes the first element; the dashed line denotes
the second element. (c) The result of the forward inference using (b) as
input. Each line represents probability P(st = qj|yt

1) (j = 1, 2, 3). (d)
The result of the backtracked interval sequence after the Viterbi infer-
ence using (b) as input. We can see that the original interval sequence
is obtained correctly.
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To see the influence of parameters in the duration-length distributions, we
generated interval sequences with zero covariance between adjacent intervals.
Figure 2.6 shows an example of the generated sequence. We see that the first
state sequence of q1, q2, and q3 has non-monotonic changes of duration (i.e., q3 is
shorter than q2, while q2 is longer than q1), which implies that the each discrete
state duration is decided independently. Consequently, the correlation modeling
with covariances between the adjacent intervals is necessary to represent rhythms
and tempo as patterns of duration lengths.

2.6 Discussion

In this chapter, we proposed a computational model, which we refer to as the
interval-based hybrid dynamical system, that comprises a finite state automa-
ton (discrete-event system) and multiple linear dynamical systems. Each linear
dynamical system represents a dynamic primitive that corresponds to a discrete
state of the automaton.

The key idea of integrating two systems is the use of temporal intervals in
which each constituting linear dynamical system is activated. As a result, the
temporal order of discrete state is mapped to the physical-time domain based on
the duration lengths of intervals. Due to the duration-length modeling of dis-
crete states, we successfully represent temporal patterns of discrete event such as
rhythms based on the correlation of adjacent interval lengths.

In this chapter, we assumed that all the parameters of the interval system are
given. We, however, require all the parameters to be estimated from training data
in most of real problems. In Chapter 3, we introduce a learning method for the
interval system.

Modeling relations among concurrent multiple streams (e.g., temporal rela-
tions of motions among facial parts) and relations among multimodal data (e.g.,
lip motion and speech data) is one of the important objectives for the interval-
based representation. We try to analyze temporal structures among motion of fa-
cial parts in Chapter 4. A general modeling method of such a temporal structures,
which we refer to as “timing structures”, will be required to represent concurrent
events. We will introduce a timing structure model in Chapter 5 using relation
between intervals.
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Figure 2.6: A generated interval sequence using zero covariance duration-length
distributions (shown in (a)) for comparison to the interval sequence
generated by using non-zero covariance distributions (shown in (b),
which corresponds to Figure 2.5 (a)).

57


