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Eye movements are an important cue to understand consumer decision processes. Findings
from existing studies suggest that the consumer decision process consists of a few different
browsing states such as screening and evaluation. This study proposes a hidden Markov-based
gaze model to reveal the characteristics and temporal changes of browsing states in catalog
browsing situations. Unlike previous models that employ a heuristic rule-based approach, our
model learns the browsing states in a bottom-up manner. Our model employs information
about how often a decision maker looks at a selected item (the item finally selected by a deci-
sion maker) to identify the browsing states. We evaluated our model using eye tracking data in
catalog browsing and confirmed our model can split decision process into meaningful browsing
states. Finally, we propose an estimation method of browsing states that does not require the
information of the selected item for applications such as an interactive decision support.
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Introduction

Understanding cognitive processes in decision making has
been a target of research for the past several decades (Payne,
1976). Human eye movements are a powerful measure-
ment that helps researchers understand how people obtain
and process information of alternative choices and recent de-
velopment of eye tracking devices has contributed to this re-
search topic (Orquin & Loose, 2013). Compared to other
traditional process tracing methods (think-out-loud (Payne,
1976) or MouseLab (Payne, Bettman, & Johnson, 1993)),
eye movements have a distinct advantage that they can be
recorded with higher sampling rates and with fewer cogni-
tive impacts. Various aspects of decision making have been
investigated using eye tracking data, including viewers’ pref-
erence (Sugano, Ozaki, Kasai, & Ogaki, 2014; Shimojo,
Simion, Shimojo, & Scheier, 2003), decision tasks (Pfeiffer,
Meißner, Prosiegel, & Pfeiffer, 2014), and motivations and
time pressure (Pieters & Warlop, 1999).
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The advantage of tracking eye movements enables the de-
tailed analysis of decision processes including the temporal
changes of cognitive states of decision makers. Several stud-
ies have shown that the decision process consists of a few
different phases (Orquin & Loose, 2013), that is, decision
makers split their decision making task into smaller sub-tasks
such as the screening of alternatives. These phases are some-
times referred to as decision stages (Russo & Leclerc, 1994;
Gidlöf, Wallin, Dewhurst, & Holmqvist, 2013) or attention
phases (Orquin & Loose, 2013). In this work, the term “de-
cision stages” is used. The existence of decision stages has
been confirmed in many works (Russo & Leclerc, 1994;
Wedell & Senter, 1997; Clement, 2007; Glaholt & Reingold,
2011; Reutskaja, Nagel, Camerer, & Rangel, 2011; Glöckner
& Herbold, 2011; Gidlöf et al., 2013).

In early versions of decision stage models, before eye
tracking was widely used, the decision process was con-
sidered to be roughly separated into two types of decision
stages: screening and evaluation (Payne, 1976). In the
screening stage, decision makers obtain an overview of in-
formation of all products; then, in the evaluation stage, they
evaluate the few remaining alternatives to make a selection.
To our knowledge, Russo et al. were the first to utilize eye
tracking to model decision stages (Russo & Rosen, 1975;
Russo & Leclerc, 1994). Russo measured participants’ eye
movements in a supermarket-like experimental environment
where real products were displayed on a shelf. Through
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the experiment, Russo et al. confirmed the existence of a
verification stage after the two previously proposed decision
stages. Their work lead to a lot of follow-up work on de-
cision stages in decision making (Wedell & Senter, 1997;
Clement, 2007; Glaholt & Reingold, 2011; Reutskaja et al.,
2011; Glöckner & Herbold, 2011; Gidlöf et al., 2013).

Many questions still remain in decision stage analysis; a
fundamental problem is that there is no concrete method for
identification of decision stages. Existing methods employ a
heuristic approach in which top-down rules are given by an-
alysts based on their observations. This caused disagreement
among the previous studies, such as the number of decision
stages and their interpretations. Some studies (Gidlöf et al.,
2013; Russo & Leclerc, 1994) noted the decision stages can-
not be clearly separated like the previous studies assumed.
The boundary between stages is further blurred due to the
occasional interruption into other stages. For example, it is
likely for decision makers to go back to the screening stage to
re-input item information during the evaluation stage. Thus,
a concrete theory on the quantity and type of decision stages
is not established, and this may change with task character-
istics. Accordingly, it is not feasible to model the decision
stage interruptions by defining top-down rules that cover all
possible cases.

In this paper, we propose a choice behavior model to trace
the temporal changes of decision stages in consumer decision
process based on a probabilistic approach. Unlike previous
top-down approaches, the probabilistic model presented here
learns the segments of stages using eye tracking data in a
bottom-up manner, which means we do not have to know
about the details of decision stages or how they transit a pri-
ori. We exploit only a couple of simple assumptions about
interval lengths between a glance and the next glance on the
selected item (the alternative finally selected by the decision
maker), and the rest of the model (including how stages tran-
sit) is learned from the data. In order to deal with bidirec-
tional transitions between stages described above, we use a
hidden Markov model whose state corresponds to decision
stages. Here, the decision stages of our model are referred
to as browsing states to represent their bidirectional charac-
teristics instead of the term of stage that indicates unidirec-
tional transitions. Our method is evaluated through an eye
tracking experiment in a digital catalog browsing situation
with experimenter-specified task criterion. The task criterion
specifies the number of candidates among a set of items on
a screen. Then, our approach was evaluated by measuring
how the model can segment reasonable intervals for brows-
ing states in terms of (1) description capability of differences
among the tasks and (2) accuracy in identifying when a par-
ticipant is exhibiting comparison behavior among candidate
items.

The proposed browsing model enables more detailed anal-
ysis of decision stages, such as how the interruptions of

stages relate to decision tasks. It is also possible to use our
model for applications such as interactive information sys-
tems that support human decision making by providing the
right information at the right time. In this situation, the in-
formation about selected items that our model uses to iden-
tify browsing states is not available. Thus, we also propose
an estimation method of browsing states that only requires
eye tracking data and content layout information. To achieve
this, our choice behavior model is extended to a hidden semi-
Markov model (Yu, 2010) so that it can describe duration of
browsing states. The estimation method is evaluated by mea-
suring how it can replicate the results by our model that uses
information of the selected item.

Consumer Decision Processes

This section first presents more detail on previously pro-
posed decision stage models and their limitations (Russo &
Leclerc, 1994; Gidlöf et al., 2013). Next, we present several
existing information search gaze models that take a proba-
bilistic approach. Finally, we introduce findings on browsing
behavior in different task complexities.

Catalog browsing states

Russo et al. pioneered decision stage analysis using eye
tracking (Russo & Leclerc, 1994). They investigated the
existence of decision stages in consumer decision processes
and their characteristics. As a result of their eye tracking
experiments, they found that the decision processes consist
of three stages: orientation, evaluation, and verification. In
their paper, each stage is identified based on a sequence of
“dwells” on alternative items, where a dwell here is a set of
consecutive fixations on each alternative 1. Dwell sequence
analysis is the commonly used approach for process trac-
ing of decision stages (Glaholt & Reingold, 2011; Orquin &
Loose, 2013). The orientation stage is defined to be the stage
that occurs before the first “re-dwell” (a dwell on an already-
examined item) appears. The evaluation stage is between the
first and the last re-dwell and the verification stage is after
the last re-dwell. This study leads to a lot of follow-up work
on decision stage analysis; however, the validity of Russo’s
work has been questioned by some researchers due to the fact
that the researchers were manually tracking participants’ eye
movements through a one-way mirror (Pfeiffer et al., 2014).

More recently, Gidlöf et al. re-evaluated Russo’s three-
stage model, calling it the Natural Decision Segmentation
Model (NDSM), and used modern eye tracking technol-
ogy (Gidlöf et al., 2013). In NDSM, the information of the
selected item is used as a stage divider, i.e., the evaluation

1The term of ‘fixation’ here indicates a visual fixation between
saccades. The term is also used in Russo’s paper (Russo & Leclerc,
1994), however, Russo’s “fixation” corresponds to a glance or a
dwell in this paper.
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stage in NDSM is defined to be between the first and the
last dwell on the selected item. Their model was evaluated
through a real-world super market experiment by measuring
how the identified decision stages can describe differences
between two tasks (search and decision) compared to Russo’s
model. Their research established a difference in browsing
behavior between the two tasks, however, their method of
identifying different decision stages still had some limita-
tions. As noted in their paper, the stages can be often in-
terrupted by other stages, for example, going back to the ori-
entation stage to re-input item information during the evalua-
tion stage. Instead of defining rules to cover the interruption
of decision stages, Gidlöf et al. assumed each stage is domi-
nated by a specific function of the decision process even if it
contains elements of other stages.

Ideally, decision stage analysis would account for the in-
terruption of stages; however, it is not possible to define
top-down rules that cover all situations. This is because the
needed information about browsing states is not known in
advance, i.e., the number of stages that appear in a deci-
sion making session and possible types of decision stages
can vary depending on decision making factors such as tasks,
user personalities, and so on.

Probabilistic approach in modeling information processing
states

Groner et al. pioneered modeling of human information
processing based on Markov models (Groner & Spada, 1977;
Groner & Groner, 1982, 1983). They empirically showed
that their proposed models can predict eye movements and
error patterns in high-level cognitive process such as problem
solving. Liechty et al. proposed a hidden Markov model to
capture two distinct attention states (local or global) while vi-
sually exploring complex scenes (Liechty, Pieters, & Wedel,
2003). In the local search state, viewers focus on specific
aspects and details of the scene, meanwhile, in the global
attention state, viewers focus on exploring the informative
and perceptually salient areas of the scene. Their model is
evaluated through an eye tracking experiment of consumers’
attention to print advertisements in magazines. Simola et al.
(Simola, Salojärvi, & Kojo, 2008) employed a HMM to un-
cover processing states in text reading. Three HMMs were
built using sequences of gaze motion features (e.g., saccade
lengths) corresponding to three different information-search
tasks: simple word search, finding the answer to a question,
and selecting an interesting title from a list. Their results
showed that the tasks can be estimated from a newly ob-
served sequence of eye movements by comparing the likeli-
hood of each model. In their model, hidden states are learned
using gaze data without any prior knowledge, and are inter-
preted as scanning, reading, and decision.

There are a few probabilistic gaze models in consumer
decision process. Stüttgen et al. proposed a satisfactory

decision process model using eye tracking data (Stüttgen,
Boatwright, & Monroe, 2012). The satisfactory decision
process model is a decision making model that assumes de-
cision makers choose alternatives that satisfy a set of spe-
cific criteria. In their model, information search behavior
is represented by a HMM which has two states: local and
global search state based on the above mentioned Liechty’s
local/global attention model (Liechty et al., 2003). Shi et
al. proposed a hierarchical HMM to uncover information ac-
quisition process on catalogs with attribute-by-product ma-
trix layouts (Shi, Wedel, & Pieters, 2013). Their model
consists of two layers of hidden states, in which the lower
layer hidden states correspond to types of information ac-
quisition processes, and the higher layer hidden states cor-
respond to strategy. For their model observations, they em-
ploy probabilities of three of the types of transitions among
AOIs (regions that describe an attribute of a product) on a
screen: attribute-based (a transition between regions of the
same attribute but different items), product-based (a transi-
tion between regions of different attributes but for the same
item), and others. Although their model can represent similar
states to decision stages, it can be applied to only eye move-
ments for catalogs with attribute-by-product matrix layouts.
In most situations where the differences between attribute-
based and product-based information search behavior are un-
clear, we need to reconsider which features of gaze should be
analyzed.

Browsing states and task complexities

Information processing varies with the parameters of de-
cision making tasks (Payne, 1976). When people are faced
with a decision between two alternatives, they employ a com-
pensatory decision process in which all available information
of alternatives is considered together to make a comprehen-
sive decision. In contrast, when people face a more difficult
decision task (with more alternatives), they tend to employ
a non-compensatory decision process in which some of the
available alternatives are eliminated quickly based on some
specific criteria (e.g., filtering). After narrowing the alter-
natives down, people finally evaluate the alternatives using
a compensatory decision process. This is simply because
of a limited information processing capability of decision
makers. Note that the compensatory decision process cor-
responds to the evaluation state in our model.

Approach of this study

As discussed above, there are two main issues when mod-
eling temporal changes of browsing states that correspond to
decision stages in the consumer decision process: (1) man-
aging the diversity of browsing states and (2) characterizing
features of gaze for identifying the browsing states. To ad-
dress the issue (1), this work provides a bottom-up frame-
work in which probabilistic relations between decision stage

3



Journal of Eye Movement Research
9(7):4, 1-14

Schaffer, E.I., Kawashima, H., & Matsuyama, T. (2016)
A probabilistic approach for eye-tracking based process tracing in catalog browsing

Figure 1. Experimental environment. A participant is brows-
ing a digital catalog on a display. Gaze data of the participant
are recorded by the eye tracker installed below the display.

and gaze behavior are learned from recorded gaze data. A
hidden Markov model (HMM) was employed to represent
transitions among browsing states. To address the issue (2),
we proposed a methodology for browsing-state identification
that can be used in the situation where we only know when
the selected item is looked at in the transitions of gaze target
items.

Our approach was evaluated by measuring the description
capability of differences among tasks. Here, we assume that
the number of remaining alternatives (after the eliminating
process) affects the temporal duration of the evaluation state.
Ideally, if our assumption is correct and if only one alterna-
tive remains after screening, the evaluation state would not be
observed. Meanwhile, if multiple alternatives (strong candi-
dates) remain after screening, the duration of the evaluation
state would increase.

Data Collection

Eight participants took part in the experiment. Each par-
ticipant was asked to sit in front of a display showing a digi-
tal catalog (see Fig. 1 (a)). Gaze data of the participants were
acquired as 2D points on the display by using an eye tracker 2

installed below the display.

Digital catalogs

For each participant, eight digital catalogs were prepared.
Each digital catalog contained the description (images and
text) of 16 items (see Fig. 2). The semantic attributes and at-
tribute values of items that were available in this study are
listed in Tab. 1. The semantic information was described
in text on the catalogs so that viewers could understand it
without prior knowledge. The items in each catalog were
grouped by either price or category attribute. The item posi-
tions within a group were randomized every time the catalog
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Category:	
  Alcohol	
  
Brand:	
  Asahi	
  
Name:	
  Beer	
  gift	
  set	
  
Price:	
  3000	
  yen	
  
Ranking:	
  3	
  
	
  

Figure 2. Layout of digital catalogs. Items with a same color
hue are in a same group, and each group of items are divided
by a gray frame.

was shown to a participant.

Table 1
The attributes and attribute values used in the experiments.

Category Price (yen) Ranking Review
Delicatessen 1001-3000 1-4th 1-star

Sweets 3001-5000 11-14th 2-star
Alcohol 5001-7000 21-24th 3-star

Household goods 7001- 31-34th 4-star
5-star

Task complexity

Participants were asked to select an item from a catalog as
a seasonal gift. Without any experimental manipulation, the
selection situation would vary based on participants’ prefer-
ence and products in catalogs. For example, it is possible that
participants make a decision among multiple strong candi-
dates, or perhaps they can find only one product that satisfies
their criteria. Since it is difficult to obtain such information,
we gave participants a request that specified the requirements
for items to select for each trial, for example: “Select an item
in the Alcohol category and with more than a 4-star review."

In previous work done by Pfeiffer et al., they noted goal-
directed search behavior can be induced in participants dur-
ing in-store experiments by fixing requests so that only one
item in the store satisfies all of the conditions (Pfeiffer et al.,
2014). We take a similar approach here; however, we change

2Tobii X120 (freedom of head movement: 400x220x300 mm,
sampling rate: 60 Hz, accuracy: 0.5 degrees)
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the number of items that satisfy the requests to be between 0
to 3 to investigate the relations between browsing states and
task complexities. In the rest of this paper, the term of can-
didates is used to indicate items that satisfy the request. The
number of gaze sequences recorded in the experiments with
each condition of task complexity (number of candidates) is
shown in Tab. 2. We discarded gaze sequences in which a
participant chose an item that did not satisfy the given request
(even though at least one candidate existed in the catalog).

Procedure

The first decision making session of each participant
started with a short, 5-point calibration phase. Each partici-
pant performed eight decision making sessions. In each ses-
sion, one of the requests was shown to the participant before
showing the catalog. The participants were instructed to fol-
low the request to the best of their ability. During catalog
browsing, the participants were able to refer to the request
by pressing the space key on a provided keyboard in case
where they forget the request. The gaze data during catalog
browsing were registered together with the time stamps when
the space key was pressed. The participants were instructed
to press the enter key on the keyboard when they made a
decision. When the enter key was pressed, the catalog on the
monitor was suddenly hidden. After the catalog was hidden,
the participant was asked to name the selected item.

Table 2
The number of gaze sequences with each task complexity.

Number of candidates 0 1 2 3 Total
Number of sequences 16 15 15 16 62

Examples of collected gaze data

The average of the tracking loss rates in each gaze se-
quence was 6.95%. Eye trackers sometimes contain noise in
participants’ eye movements, which can make analysis diffi-
cult. To manage error, our recorded sequences of sampling
points were first smoothed by applying a median filter 3. For
the subsequent analysis, each sequence of sampling points
was first converted to a sequence of dwells on items. Recall
that a dwell is a set of successive samples in each area of
interest (AOI), and the dwell sequence analysis is often used
in previous studies on consumer decision analysis (Glaholt
& Reingold, 2011). In this study, AOIs are the regions of
items and each dwell is simply identified by a set of suc-
cessive sampling points in each item region without identi-
fying fixations. The dwell sequences are modified by dis-
carding dwells with duration shorter than a threshold (100
msec). Moreover, if successive dwells with the same item ID
were interrupted by a blink, the intervals were combined to a
longer dwell. Any dwell in which the participant was refer-
ring to the requirements of the request was also discarded.

Examples of dwell sequences are shown in Fig. 3. In

Subject No.8, Trial No.2, Task:0

Subject No.8, Trial No.1, Task:1

Subject No.8, Trial No.3, Task:2

Subject No.5, Trial No.5, Task:3

5 10 15 20 25 30 35 40 45 50 55 60

Figure 3. Example of dwell sequences. The horizontal axis
shows the index of dwells. For each sequence, the color in
the top row corresponds to the color of regions in Fig. 2, and
the bottom row shows the timings of dwells on the selected
item by light gray highlights.

the examples, we can observe temporal differences of the
frequency of dwells on a selected item. In the top and
the third examples, similar behavior to the gaze cascade ef-
fect (Shimojo et al., 2003) can be confirmed. That is, the
selected items are more frequently looked at as time pro-
gresses. The second example supports the assertion by Russo
et al. (Russo & Leclerc, 1994). We can see an exploratory
browsing behavior after the 38th dwell on the selected item,
which can be interpreted as the verification stage. The bot-
tom example highlights the importance of considering prob-
abilistic transitions between decision stages. In the bottom
example, there is an interval that contains fewer dwells on
the selected item from the 12th dwell to the 20th dwell. Con-
sidering whether or not each item has been looked at, this
example may be interpreted as follows: the participant was
exploring the catalog until the 20th dwell with the interrup-
tion of evaluating behavior occurring at the beginning.

Proposed Model

This section describes the details of the proposed choice
behavior model and the results of its evaluation. First, basic
assumptions about the browsing states are described. Next,
we explain how we formulate the assumptions for the proba-
bilistic model. Finally, our browsing model is evaluated us-
ing eye tracking data collected in the previous section.

The basic assumption of browsing states

Here we make a couple of assumptions of browsing states
in multi-alternative choice situations. First, we assume the
consumer decision process can be described by two types

3In this paper, the window size of the median filter was 5 sam-
pling points at 60 Hz (corresponding to about 83 msec).
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Sst Sexp Seva Seva

: A dwell on the selected item, IS
: A dwell on non-selected items, INS

…

…
A sequence of browsing states

0 = 4 1 = 6 2 = 3 3 = 2

A sequence of binary labels BL

Q

Figure 4. Segments of browsing states.

of browsing states: exploration and evaluation. The explo-
ration state is a decision state where decision makers aim to
obtain broad information of items to screen items out or to
confirm their decision. Meanwhile, the evaluation state is a
decision state where a decision maker aims to obtain detailed
information of fewer items to evaluate them as strong can-
didates. We define the correspondence between our brows-
ing states and the three decision stages in the previously pro-
posed three stage model (Russo & Leclerc, 1994; Gidlöf et
al., 2013) as follows: the exploration state corresponds to
the orientation and the verification stage, and the evaluation
state corresponds to the the evaluation stage. Although the
orientation stages and the verification stages are qualitatively
distinguished by Russo et al., the gaze behavior for each state
would be expected to be similar since the two stages are iden-
tified by applying the same process from the beginning of the
gaze sequence forward or from the end to the beginning.

Second, we assume that the browsing states can be char-
acterized/identified by examining how frequently dwells on
the selected item occur. That is, decision makers are ex-
pected to look at the selected item more often when they are
in the evaluation state than when they are in the exploration
state. In previous decision stage models, re-dwells (a dwell
on an item that is already looked at more than once) (Russo
& Leclerc, 1994) or the first and the last dwells on the se-
lected item (Gidlöf et al., 2013) are considered as an impor-
tant cue to identify decision stages. We integrated those cues,
in particular, our method considers how long it takes until a
re-dwell on the selected item occurs in each browsing state
(interval lengths between dwells on the selected item).

The proposed choice behavior model

Suppose a catalog contains information of a set of N items
IAll = {1, . . . ,N}, and a decision maker selects an item out of
the item set. Eye tracking data of the decision maker are first
represented as a sequence of dwells on items I = (i1, . . . , iJ)
(i j , i j+1, i j ∈ IAll), where J is the total number of dwells
in the decision making session. Let us denote binary la-

bels as IS and INS that correspond to the selected item and
the other items, respectively. The sequence of dwells on
items, I, is converted to a sequence of the binary labels as
BL = (bl1, . . . , blJ) (bl j ∈ {IS, INS}), where the j-th ele-
ment, bl j, represents the binary label of the item at the j-th
dwell. The binary sequence, BL, is depicted as a sequence
of black and white labels in Fig. 4. Assuming the selected
item is looked at K times, a sequence of dwell timings on
the selected item is obtained as JS = ( j1, . . . , jK). The bi-
nary label sequence, BL, is then segmented at intervals of
JS, as shown in Fig. 4. Here, we define the k-th segment
as [ jk + 1, jk+1](k ∈ {1, . . . ,K − 1}) and the length of the k-th
segment as τk = jk+1− jk. Note that the k-th segment contains
the jk+1-th dwell, which is on the selected item.

The last segment and its length are denoted as [ jK−1 +

1, jK] and τK−1 = jK − jK−1, respectively when the last dwell
is on the selected item (i.e., jK = J). Meanwhile, when the
last dwell is not on the selected item (i.e., jK , J), we con-
sider an additional dwell on the selected item after the last
dwell as iJ+1 such that blJ+1 = IS for convenience. This
is because the attention of the decision maker is considered
to be on the selected item just after the last dwell when the
decision maker makes a choice at the end of each decision
making session. In this case, the last segment and its length
are denoted as [ jK+1, J+1] and τK = (J+1)− jK , respectively.

Besides the first segment, [ j1 + 1, j2], we here define the
segment until the first dwell on the selected item and its
lengths as [1, j1] and τ0 = j1, respectively. The segment
before the first dwell on the selected item, [1, j1], should
be treated differently to the other segments since the tim-
ing of the first dwell on the selected item depends on ex-
ogenous factors of content layout rather than browsing states
of decision makers. For this, we consider start state in
addition to the above mentioned two browsing states. Fi-
nally, a sequence of lengths of segments is defined as τ =

(τ0, τ1, . . . , τK′ ), where K′ = K when jK , J, and K′ = K−1
when jK = J.

Let us denote the two browsing states, the exploration
and the evaluation state, as S exp and S eva, respectively, and
the start state as S st. Assuming the browsing states do not
change during the segments, what we want to estimate here
is a sequence of browsing states Q = (q0, q1, . . . , qK′ ) using
the length of each segment as a cue. Note that every decision
process starts with the start state in our model (i.e., q0 = S st)
and that the states qk ∈ {S exp, S eva}(k = 1, ...,K′) are to be
estimated. In particular, how long it takes until a re-dwell on
the selected item occurs in each browsing state (lengths of the
segments) in each browsing state is formulated as follows.

Exploration state. The exploration state is defined to
be a state where a decision maker aims to explore infor-
mation of a whole catalog. Thus, each item in the catalog
is considered to be looked at with equal frequency (i.e., a
uniform distribution) regardless of whether or not it is the
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selected item. Assume that the k-th segment is the explo-
ration state and contains the j-th dwell and the ( j − 1)-th
dwell. Since the ( j − 1)-th dwell is not the end of the seg-
ment, the ( j − 1)-th dwell is on a non-selected item. As
mentioned above, the item on the ( j − 1)-th dwell and the
j-th dwell is always unequal (i j−1 , i j). Thus, when the
( j − 1)-th dwell is on a certain item, the j-th dwell can only
be on one of the (N − 1) items, where N is the total num-
ber of items on the catalog as mentioned above. Accord-
ingly, the probabilities of the j-th dwell being on a non-
selected item and on the selected item are represented as
P(bl j = INS|bl j−1 = INS, qk = S exp) = (N − 2)/(N − 1), and
P(bl j = IS|bl j−1 = INS, qk = S exp) = 1/(N − 1), respectively.

The probability of the k-th interval lasting l dwells is de-
scribed as a geometric distribution

P(τk = l|qk = S exp) =

(
N − 2
N − 1

)(l−2) 1
N − 1

. (1)

Evaluation state. The evaluation state is defined to be
a state where a decision maker aims to obtain more detailed
information of a set of specific items (strong candidates).
Therefore, in the evaluation state, the probability of a dwell
on the selected item is considered to be higher than one in
the exploration states. Since we do not know the probability,
we introduced a parameter peva to represent the probability
of a dwell on the selected item in the evaluation state; that
is, P(bl j = IS|bl j−1 = INS, qk = S eva) = peva. Thus, the
probability of the j-th dwell being on a non-selected item is
represented as P(bl j = INS|bl j−1 = INS, qk = S eva) = 1 − peva.
Here, the value of peva is estimated from eye tracking data
in this study. Note that the higher value of estimated peva
indicates that the selected item is more likely to be looked at
in the evaluation state.

The probability of the k-th interval lasting l dwells is de-
scribed as a geometric distribution

P(τk = 1|qk = S eva) = (1 − peva)(l−2) peva. (2)

A hidden Markov based choice behavior model. Since
we want to represent free transitions of the browsing states,
we employ a hidden Markov model (HMM). The proposed
HMM is denoted as λchoice = (S, π, A,L,C). S is a set of
browsing states; S = {S st, S exp, S eva}. π is a set of initial state
probabilities; π = (πst, πexp, πeva) = (1, 0, 0) since our model
assumes decision process always starts from the start state,
S st. A is a 3× 3 state transition probability matrix, where ai, j

indicates the transition probability from the i-th state to the
j-th state. In our model, ai, j is always set to zero if the j-th
state corresponds to the start state, S st. That is, no transition
from any states to the start state, S st, occurs including self-
transition.

Possible outputs of the model L are lengths of the seg-
ments: L = {1, . . . , Lmax}, where Lmax is the maximum length

of the segments. C is a set of output probabilities. Note the
probability of an output l ∈ L in the exploration state and the
evaluation state, P(τk = l|qk = S exp) and P(τk = l|qk = S eva),
are defined as the Equation (1) and the Equation (2), respec-
tively. The output probabilities in the start state are denoted
as {P(τ0 = l)}l. The output probabilities are normalized so
that the sum of output probabilities in each state is 1.

Estimation of model parameters and identification of
browsing states. The unknown parameters to be estimated
here are peva, the probability of dwells on the selected item in
the evaluate state, {P(τ0 = l)}l, the output probabilities of the
start state, and A, the transition probabilities of hidden states.
The output probabilities of the start state are simply calcu-
lated as the frequency distribution of the lengths of the first
segments of each sequence . The rest of model parameters
are estimated by the Baum-Welch algorithm (Baum, Petrie,
Soules, & Weiss, 1970). Once the model parameters are es-
timated, browsing states can be estimated from the sequence
of segment lengths, τ, using the Viterbi algorithm.

Evaluation

Our catalog browsing model is evaluated by compar-
ing with previously proposed two decision process models:
Russo’s three stage model (R&L) (Russo & Leclerc, 1994)
and Natural Decision Segmentation Model (NDSM) (Gidlöf
et al., 2013) using the collected gaze data (see the section of
Data Collection).

Estimated model parameters. The model parameters
are estimated using the eye tracking data of all participants.
Fig. 5 shows the state transition probabilities. The result
shows that the transition from the start state to the exploration
state is more likely than one from the start state to the eval-
uation state. Moreover, the transition from the exploration
state to the evaluation state is of higher probability than the
opposite transition. This indicates that decision makers tend
to start from the exploration state and then gradually shift to
the evaluation state.

Fig. 6 shows the output probabilities of the start
state. Fig. 7 shows the output probabilities of the ex-
ploration/evaluation states and the frequency distribution
of lengths of all segments except the first segment (i.e.,
τ1, . . . , τK′ ). The frequency distribution in Fig. 7 has its peak
when the length is 2 (similar to the geometric distribution).
The probability of dwells on the selected items in the evalua-
tion state was learned as peva = 0.544. This result shows that
decision makers are more likely to look at the selected items
within short intervals in the evaluation state.

Example sequences of identified states. Four exam-
ple sequences of identified browsing states by the proposed
model and other two comparison models are shown in Fig. 8.
Only when the selected item was first looked at after the most
of items were examined by coincidence, and the first re-dwell
pattern occurred at the same time, these three models iden-
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Figure 5. The estimated transition probabilities of the brows-
ing states using eye tracking data of all participants.
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Figure 6. The output probabilities of the start state, S st, esti-
mated using eye tracking data of all participants.

tify browsing states similarly (see the left bottom example).
However, in the most of other cases, participants continue
examining other items even after looking at the selected item
such as in the left top example. Moreover, in the right bot-
tom example, R&L and NDSM both identify the evaluation
state so as to occupy the whole sequence. The gap from
the 12th dwell to the 21th dwell where the selected item is
less frequently looked at is described only with the proposed
method.

Difficulty of decision tasks and browsing states. Fig. 9
shows the mean ratio of the two browsing states with each
task type where the number of candidates is 1 to 3. The
proposed method and R&L show an increase in the ratio of
the evaluation state in tasks with a higher number of strong
candidates. There was a significant difference of the ratio of
the evaluation state between the task 1 and the task 3 using
R&L model (Welch’s t-test; p = .024). Although we did
not observe any significant difference for the results of the
proposed model and NDSM, the proposed model shows the
similar effects of the task to ones with R&L model. These
results indicate that our model and R&L can describe dif-
ferences of browsing behavior between different tasks when
compared with NDSM. Note here that we did not consider
eye tracking data in tasks where the number of candidates is
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Figure 7. The output probabilities of the exploration state,
S exp, and the evaluation state, S eva, estimated using eye track-
ing data of all participants. The bars represent the frequent
distribution of segment lengths.

0 since the difficulty of the decision task is hard to interpret.

The ratio of the evaluation and exploration states identi-
fied using our model is biased towards the exploration state
more than the other two comparison models. This indicates
that our model is more sensitive to the interruptions of the
exploration/evaluation states, which often appear as shown
in Fig. 8. This result shows that allowing bi-directional tran-
sitions of browsing states in the state model is more effective
when modeling browsing states.

Dwells on non-selected candidates and browsing
states. Candidates are the items that satisfy the task (see Data
Collection section for the details.). In tasks with more than
two candidates, not only how selected items are looked at
but also how non-selected candidates are looked at is a good
measurement to understand the characteristic of the browsing
states. Fig. 10 and Fig. 11 show the proportion of dwells on
each item type: the selected item, non-selected candidates,
and the others. Fig. 10 shows the results in tasks with two
candidates, and Fig. 11 shows the results in tasks with three
candidates. In the both figures, non-selected candidates are
more likely to be looked at in the evaluation states, S eva,
compared to the exploration states, S exp. There were sig-
nificant differences of the ratio of the dwells on non-selected
candidates between the exploration state and the evaluation
state using our model (Welch’s t-test; p < .001 for two-
candidate-tasks and p = .022 for three-candidate-tasks). Us-
ing R&L, there was a significant difference between the ex-
ploration state and the evaluation state in three-candidate-
tasks (Welch’s t-test; p = .001). Using NDSM, there was
a significant difference between the exploration state and
the evaluation state in two-candidate-tasks (Welch’s t-test;
p = .009). Only when our model was used, the significant
differences were observed in the both tasks.
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Figure 8. Examples of estimated browsing state sequences. For each sequence, the color in the top row corresponds to the
color of regions in Fig. 2. In the second row, the timings of the dwells on the selected item is shown by light gray highlights.
From the third row to the bottom row, the blue and red intervals correspond to the exploration state and the evaluation state,
respectively.
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ber of candidates is 2. The whiskers represent standard devi-
ation.
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Figure 11. The proportion of total dwells on selected items,
non-selected candidates and other items when the number of
candidates is 3. The whiskers represent standard deviation.

Application: Estimation of Browsing States

In this section, we propose an estimation method of
browsing states that does not require information of selected
items so that it can be used for possible applications such as
decision support systems. For example, when an information
system can understand browsing states of a user during a de-
cision making task, it enables the system to provide the right
information at the right time.

To achieve this, we extend our choice behavior model pro-
posed in the previous section with gaze actions derived by the
spatial and semantic structure of the digital catalog on the
screen. The following sections first present an overview of
the proposed estimation method. Next, the details of how to
encode eye movements into gaze actions and how our choice
behavior model is associated with the gaze actions is pre-
sented.
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Figure 12. Overview of the estimation method.

The overview of our estimation method

Suppose we have a set of dwell sequences I = {Iu =

(i1, . . . , iJu )}u and corresponding sequences of browsing
states Q = {Qu = (q1, . . . , qJu )}u as training data, where u
is the id of recorded eye tracking sequences. Q is obtained
by our choice behavior model, λchoice. In this situation, the
goal is to estimate browsing states from a newly observed
gaze data without the information of the selected item.

The overview of the proposed estimation method is shown
in Fig. 12. Eye movements are first encoded to a sequence of
gaze features using a semantic structure of the catalog, called
designed structure (Ishikawa, Kawashima, & Matsuyama,
2015). Designed structure is high-level content structure that
reflects the designer’s point of view such as groupings of
items. Instead of using semantic attributes of items, the de-
signed structure employs embedded semantic information as
a content layout. This has an advantage on dealing with the
above mentioned decision-support situations since it can be
applied to any visual contents as long as they share the same
layout. Second, the probabilistic relations between the gaze
features and browsing states are learned. Once the model is
learned, we can estimate browsing states of newly observed
eye tracking data using the learned model.

Gaze features

Modeling of content structure. The designed struc-
ture can be represented as follows. As with the previous
section, suppose a catalog contains information of a set of
items IAll = {1, . . . ,N}. Each item has a set of P attributes
PAll = {1, . . . , P}, where p-th attribute can take a value of
Ap possible attribute values A(p) = {1, . . . , Ap}. Here, let us
introduce a function fp : IAll → A

(p), where fp(i) indicates
the attribute value of the p-th attribute that the i-th item has.
In the content layout used in the experiment, the designer
aims to emphasize a specific attribute (e.g., category), then
all items in the same category are regarded as “in the same
group” and allocated based on their category type. To rep-
resent this process, a set of the emphasized attributes is de-
scribed as PE ⊂ PAll. Using PE, the relations among items

in the digital catalogs can be determined as follows.

Parallel relation. Two different items i and j have this re-
lation when the items share one or more emphasized
attributes; that is, fp(i) = fp( j),∃p ∈ PE.

Contrast relation. Two different items i and j have this
relation when the items do not share any emphasized
attributes; that is, fp(i) , fp( j),∀p ∈ PE.

The versatility of the use of designed structure is confirmed
by using multiple types of layouts (Ishikawa et al., 2015).
This paper focuses on analysis of the sequence of encoded
gaze features. Therefore, we only use catalogs with category-
based layout that can be simply described by the above two
relations. We represent the relations among items as a di-
rected graph for the encoding of eye movements. Let us de-
note a set of nodes VI = {v(n)

I | n = 1, . . . ,N} corresponding
to the K items. Here, design-relation edges are defined as
ED ⊆ VI × VI, where each edge ed ∈ ED has either label par-
allel or contrast. Finally, the designed structure is defined by
a directed graph GD = (VI , ED) (as shown in Fig. 13 (a)).

Encoding eye movements into gaze fea-
tures. A sequence of dwells on items, I =

(i1, . . . , iJ)
(
i j , i j+1, i j ∈ IAll

)
, is associated with design

relation labels derived from the graph of the designed struc-
ture, GD. For simplicity, the id of eye tracking sequences, u,
is omitted in this section. For each tri-gram of gaze regions
(i j−1, i j, i j+1) ( j ∈ {2, . . . , J − 1}) in a gaze region sequence,
a path of corresponding item nodes in the graph GD is
obtained. Tri-gram patterns of gaze regions is a gaze feature
often used in previous eye tracking studies (Nakano & Ishii,
2010; Bulling, Ward, Gellersen, & Troster, 2011; Kübler,
Kasneci, & Rosenstiel, 2014). By considering only the
labels of edges of each path, we can categorize the paths into

Contrast
Parallel

vI
(1) vI

(2)

vI
(3) vI

(4)

vI
(5)

vI
(8)vI

(7)

vI
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(9) vI

(10)

vI
(11) vI
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(a) Designed structure of digital cata-
logs used in the experiment.

o1
 

o2
 

o3
 

o4
 

o5
 

o6
 

(b) Gaze features.

Figure 13. Encoding of eye movements. (a) Edges between
dotted frames indicate that every node in the frame is con-
nected to every node in the other frame. (b) Six patterns of
tri-gram paths in the graph GD. The two bottom features cor-
respond to comparison patterns in which the first and the last
dwell of the tri-gram is on the same item.
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six patterns {o1, . . . , o6} as shown in Fig. 13 (b). Note that
the four top features in Fig. 13 (b) correspond to tri-grams
with three different gaze regions, that is, i j−1 , i j+1, and the
two bottom ones correspond to binary comparison patterns
in which the first and the last dwell of the tri-gram is on the
same item (i j−1 = i j+1). Finally, a sequence of gaze features
is obtained as X = (x2, . . . , xJ−1), (x j ∈ {o1, . . . , o6}).

Modeling probabilistic relations of gaze features and brows-
ing states

Our choice behavior model is denoted as λchoice =

(S, π, A,L,C) (see the section of Proposed model for the
details). We modify the model, λchoice, to a hidden semi-
Markov model (HSMM) λHSMM to associate the gaze actions
with the browsing states.

HSMM (also known as explicit duration hidden Markov
model) is an extension of HMM that considers additional pa-
rameters for explicitly modeling the duration of states. The
most important difference between λchoice and λHSMM is that
the outputs of λHSMM are the gaze features, meanwhile, the
outputs of λchoice are the interval lengths between dwells on
the selected item.

The proposed HSMM is denoted as λHSMM =

(SHSMM,OHSMM, AHSMM, BHSMM, PHSMM, πHSMM). A set of
hidden states SHSMM, initial state probabilities πHS MM ,
and state transition probabilities AHSMM are common to
the choice behavior model, λchoice, that is, SHSMM =

S = {S st, S exp, S eva}, AHSMM = A, and πHS MM = π =

(πst, πexp, πeva) = (1, 0, 0). OHSMM is a set of gaze feature
labels; OHSMM = {o1, . . . , o6} (see Fig. 13 (b)). BHSMM is a
3 × 6 output probability matrix, where bi,m indicates the out-
put probability of the m-th gaze feature at the i-th browsing
state. PHSMM is a 3×Tmax duration distribution matrix, where
pi,l indicates the probability that the i-th state last for l-time
units.

The duration distribution matrix, PHSMM, represent inter-
val lengths between dwells on the selected item in the choice
model, λchoice. That is, pi,l = ci(l), where ci(l) indicates
the probability of the segment of length l at the i-th state
in the choice model (see the section of A hidden Markov
based choice behavior model for the details). Assuming
the training gaze dataset: a set of gaze feature sequences,
X = {Xu = (x2, . . . , xJu−1)}u, and corresponding browsing
state sequences, Q, obtained using the choice model, λchoice,
the unknown output probabilities, BHSMM, are simply esti-
mated as follows:

bi,m =

∑
u
∑

j Iq j=i · Ix j=om∑
u |Xu|

, (3)

where IA is an indicator function that has the value 1 when
A is true and the value 0 otherwise. Once the parameters are
obtained, the browsing states of a newly observed gaze data
can be estimated by maximum a posterior estimation.
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Figure 14. The output probabilities of each browsing state.
The color of the bars corresponds to the color of gaze features
in Fig. 13 (b).

Evaluation

The proposed estimation method is evaluated on the data
described in section Data Collection. The output probabili-
ties of the HSMM estimated by the Equation (3) with gaze
data from all participants are shown in Fig. 14. The results
show that the output probabilities of the start state and ones
of the exploration state are more similar compared to ones of
the evaluation state. In the evaluation state, the gaze feature
that consists of contrast relations (o4) and comparison pat-
terns (o5 and o6) occur more frequently than in the start state
and the exploration state. This indicates that decision makers
tend to browse catalogs more freely by ignoring groups of
items in the evaluation state.

Consistency with the identified browsing states. Sub-
ject based leave-one-out cross validation was used; that is,
gaze data of one participant was used as test data and the re-
maining of the data was used to train the model. We compare
our proposed method (HSMM) against two methods: hidden
Markov model based estimation (HMM) and maximum like-
lihood estimation (ML). In the HMM method, a three state
HMM (SHMM,OHMM, AHMM, BHMM, πHMM), where SHMM =

S, OHMM = O, πHMM = π is trained with the training gaze
data: a set of gaze feature sequences, X, and corresponding
browsing state sequences, Q. Then, the browsing states can
be estimated using the trained HMM by Viterbi algorithm. In
the ML method, the browsing state at a timing j, q j, is sim-
ply estimated by comparing the likelihood of the observed
gaze feature, x j, using the output probabilities of the HSMM
based model, λrmHS MM . That is, q j = maxi P(x j = om|q j =

i) = bi,m.
The validity of the estimated browsing states is measured

by the consistency to the browsing states of the proposed
choice model (the “ground truth” of browsing states). Tab. 3
shows the consistency of each method. The result shows
that the proposed HSMM method has the highest consis-
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Figure 15. Example sequences of estimated browsing states.
The blue and red intervals correspond to the exploration state
and the evaluation state, respectively. The gray interval cor-
responds to the start state.

Table 3
The consistency with the ground truth. The top row indicates
the consistency when we consider that the exploration state
S exp and the start state S st are the same state. The bottom
row indicates the consistency when we discriminate the two
states.

HSMM HMM ML
(S eva, others) 0.811 0.807 0.734

(S st, S exp, S eva) 0.639 0.621 0.437

tency with the ground truth. Example sequences of estimated
browsing states are shown in Fig. 15. We can see that the
HSMM method replicates the ground truth of browsing states
better than other methods; the HMM method missed the first
evaluation state, and the ML method cannot discriminate the
start state and the exploration state.

Discussion

The gaze data we collected in this study have shown the
variety of consumer decision process. We observed vari-
ous cases of decision process in terms of browsing states.
For example, some decision makers change browsing states
frequently; meanwhile, others just shift their state from the
start/exploration state to the evaluation state. The obser-
vations show that the probabilistic approach of modeling
browsing behavior in consumer decision process is effective
in terms of detecting comparison behavior in the evaluation
states compared to a top-down rule based approach.

In this paper, we investigated the relation between com-
plexity of decision tasks (the number of strong candidates)
and transitions of browsing states of decision maker. The

results of this study indicate that more complex the task gets,
the greater the ratio of the evaluation state gets. In this paper,
we only built a single model using all collected gaze data;
however, the difference between tasks we observed might in-
dicate the necessity of multiple models that correspond to
different decision tasks. Moreover, it is also possible that the
personality of decision makers and the decision strategy af-
fect the transitions of browsing states. To improve the choice
model, we need to collect and analyze more gaze data in dif-
ferent decision situations.

Possible extensions of the proposed choice model.
The proposed choice behavior model in this paper consists
of the minimum number of hidden states that can represent
our assumptions: two browsing states (exploration and eval-
uation) and a start state. This is because we aimed to keep
our model as simple as possible in order to avoid overfitting
since the amount of data was limited. However, we yet do
not know how many states are most appropriate to represent
browsing states in choice behavior. For example, we might
need to discriminate the first exploration state and interrup-
tions of exploration states that appear later in a session. In
that case, we can consider to optimize the number of states
in a data-driven manner by maximizing the likelihood of the
model.

Moreover, gaze behavior of decision makers is expected
to be affected by exogenous factors at the beginning of deci-
sion process. For example, in our situation where a decision
maker is browsing a digital catalog, the decision maker tends
to confirm all alternatives before proceeding to their detailed
evaluation. The choice model might have to be extended so
that it can manage the effects of the exogenous factor such as
the number of alternatives or layouts of catalogs.

Other gaze features to identify browsing states. We
used how often the selected item is looked at to identify
browsing states. However, there are some other cues derived
from eye movements that might be useful as well such as
fixation duration. To find appropriate gaze features for deci-
sion stage analysis, it would be possible to apply a statistical
approach of feature selection using a huge gaze dataset.

Conclusion

This paper proposed a probabilistic gaze model to under-
stand browsing states in a multi-alternative choice situation.
The proposed model is based on a couple of simple assump-
tions about how often the selected item is looked at to iden-
tify browsing states and the rest of the model is estimated in a
bottom-up manner. This approach enables the representation
of complex choice behavior including interruptions of brows-
ing states. We confirmed the validity of the proposed model
through an eye tracking experiment in a catalog browsing sit-
uation. The results showed that our model can identify when
a participant is exhibiting comparison behavior among candi-
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date items better than comparison models. We also proposed
an estimation method of browsing states that does not require
the information of the selected item for applications such as
interactive information systems.
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