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Abstract

In this paper, we propose a novel approach to speaker
detection by an integration of audio-visual information us-
ing the cue of timing structure. We first extract feature se-
quences of lip motion and sound, and segment each of them
into temporal intervals. Then, we construct a cross-media
timing-structure model of human speech by learning the
temporal relations of overlapping intervals. Based on the
learned model, we realize speaker detection by evaluating
the timing structure of the observed video and audio. Our
experimental result shows the effectiveness of using tempo-
ral relations of intervals for speaker detection.

1. Introduction

In human speech communication, we recognize the
other’s utterance state (i.e. who is speaking at that time) us-
ing not only audio information (e.g. direction of sound and
phonetic characteristics) but also visual information (e.g.
face position and lip motion). Similarly, for a speech un-
derstanding system, visual information may play an impor-
tant role to improve the accuracy of speaker detection. For
example, some methods of merging visual and audio infor-
mation have been proposed for automatic video recording
of teleconferences or archiving lectures [5, 8].

Most existing methods for speaker detection are realized
by combining techniques of sound localization via a micro-
phone array and human tracking via background subtrac-
tion by using coupled Hidden Markov Models (HMMs) or
Dynamic Bayesian Networks (DBNs) [11, 2]. However,
because of the spatial resolution of the microphone array,
these methods can become ineffective in situations where
speakers are physically close to each other.

To achieve high accuracy in such situations, we can use
the cue of co-occurrence patterns between lip motion and
speech sound. For example, when we produce a plosive
(e.g. /pa/), the starting of lip motion and that of sound are

almost coherent. In contrast, in utterance of a vowel (e.g.
/a/), the lip motion precedes the speech sound. That is,
they are not necessarily synchronized. However, we hu-
man consider that these temporal differences are perfectly
normal. In fact, it is known that some temporal variance is
allowed in our speech perception [13]. Frame-wise integra-
tion methods are often used in speech recognition, however,
they sometimes fail to describe such loose synchronization.

From these consideration, in this paper, we propose a
novel approach to speaker detection by using a model that
directly represents the specific temporal relations between
lip motion and sound; We describe these relations as timing
structure. As a related research, Nishiyama et al. applied
the idea of timing structure in modeling the temporal rela-
tions among partial movements in facial image sequences,
and made a success in separation of intentional smiles and
spontaneous smiles [9]. In contrast with this, we deal in the
timing structure of multimedia signal.

Our goal is to detect the speaker in a scene in which there
are multiple persons. This technique is also applicable to
content analysis of archived video data, because our method
is realizable with only one camera and one microphone.

2. Problem Definition and Our Approach

The goal of this paper is to correctly detect the speaker,
when either one of participants is speaking. In order to con-
centrate on verifying the effectiveness of using the timing
structure, we consider the following situation:

• There are multiple persons in the scene.

• Only one camera and one microphone are used.

• Frontal faces of all persons are captured.

• Lip motion of all persons can occur at a time.

• Ordinary background noise is included in audio data.

• There is no overlap in utterance.
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Figure 1. Flow of speaker detection using the timing structure.

The flow of our method is the followings (See Figure 1):
This is a two-step approach which consists of the learning
phase and the recognition phase.

In the learning phase, at first, we extract a feature se-
quence of mouth shape and that of sound power level from
captured data, and segment each of them into temporal in-
tervals that can be described in linear dynamical systems.
Then, we construct a cross-media timing-structure model of
human speech by learning the temporal relations of overlap-
ping temporal intervals. This model describes the allowable
range of the temporal fluctuation in human speech.

Secondly, in the recognition phase, we get interval se-
quences of newly-observed data in the same way. Then,
based on the learned timing-structure model, we calculate
scores of the timing structure of lip motion of each person
and sound. Finally, by comparison between the evaluation
scores, we detect the speaker.

In Section 3, we describe modeling of a single media sig-
nal. In Section 4, we propose a method for learning timing
structure, and for evaluating newly-observed data. In Sec-
tion 5, we evaluate our proposed method using real data.

3. Modeling a Single Media Signal

In this paper, we utilize the Interval-based Hybrid
Dynamical System (IHDS), which was introduced by
Kawashima et al. [6, 7], to describe single-media signals
based on the structure of intervals. The IHDS consists of a
discrete-event system and a dynamical system which is de-
scribed by differential equations. This structure is similar
to the Switching Linear Dynamical System (SLDS) [12];
however, the IHDS is more like Segment Models [10] be-
cause the two types of systems are integrated based on in-
tervals (segments). By exploiting the operation on the in-
tervals, the IHDS provides efficient learning techniques in-
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Figure 2. Interval-based Hybrid Dynamical System (IHDS).

cluding the hierarchical clustering of linear dynamical sys-
tems. In addition, the IHDS is a stochastic model that can
generate multivariate vector sequences with interval-based
structures.

3.1. IntervalBased Hybrid Dynamical System

System architecture. The IHDS has a two-layer architec-
ture (Figure 2). The first layer has a finite state automaton
that models stochastic transitions between intervals. The
second layer consists of a set of multiple linear dynamical
systems, D = {D1, · · · , DN}. To integrate these two lay-
ers, intervals are introduced; each interval is described by
〈qi, τ〉 where qi denotes a discrete state in the automaton
and τ denotes the physical temporal duration length of the
interval. It is assumed that each state, qi, in the automaton
corresponds to a unique linear dynamical system, Di.

Linear dynamical system. The state transition of dynam-
ical system Di is modeled by the following equation:

xt = F (i)xt−1 + g(i) + ω
(i)
t , (1)

where xt is the internal state vector at time t. F (i) is a tran-
sition matrix and g(i) is a bias vector. ω

(i)
t is the process

noise which is modeled by a Gaussian distribution. Note
that each dynamical systems has F (i), g(i), and ω

(i)
t indi-

vidually, and that all the dynamical systems share a single
internal state space.

Interval-based state transition. Let I = [I1, · · · , IK ]
be an interval sequence generated by the automaton of the
IHDS. Here, they are assumed that the first-order Markov
property for the generated intervals and that the adjacent in-
tervals have no temporal gaps or overlaps. Then, the state
transition process can be modeled by the conditional prob-
ability, P (Ik = 〈qj , τ〉|Ik−1 = 〈qi, τp〉), where it denotes
that the interval 〈qj , τ〉 occurs after the interval 〈qi, τp〉.



3.2. Learning and Segmentation Method

Learning method for the IHDS. The goal of the IHDS
identification is to estimate the number of linear dynamical
systems, N , and the parameter set of all the systems Di.
The estimation process is divided into two steps: a clus-
tering process of dynamical systems using a typical train-
ing data set, and a refinement process for all the parameters
based on the EM (Expectation-Maximization) algorithm [4]
using all the training data. At the same time, we can seg-
ment all the training data into temporal interval sequences.
The details of the learning algorithms are described in [6].

Segmentation of newly-observed data. We can segment
newly-observed signal data using the learned IHDS. When
a observed sequence is given, the IHDS finds an optimal
interval sequence to describe the observed data based on a
likelihood calculation.

4. Modeling the Cross-Media Timing Structure
Applying the learned IHDSs to each of video and au-

dio signals, we obtain a set of interval sequences. In this
section, we concentrate on modeling the timing structure
between two media signals, S and S′.

We use the term mode to describe the primitive event
of motion or sound observed in media signals (e.g. “open-
ing mouth” in video), and we assume that each mode, Mi,
uniquely corresponds to a linear dynamical system Di in
the IHDS. Let Ik be an interval that has mode mk ∈
{M1, · · · ,MN} in signal S and let bk and ek be its start-
ing and ending timing points , respectively. Similarly, let
I ′k′ be an interval that has mode m′

k′ ∈ {M ′
1, · · · ,M ′

N ′} in
the range [b′k′ , e′k′ ] of signal S′.

Here, we define the timing structure between S and S′ as
temporal relations of overlapping interval pairs. Especially,
to describe a particular timing structure, we introduce the
following distribution for every mode pair:

P (bk − b′k′ = Db, ek − e′k′ = De|mk = Mi,

m′
k′ = M ′

p, [bk, ek] ∩ [b′k′ , e′k′ ] 6= ∅). (2)

We refer to this distribution as a temporal difference distri-
bution (Figure 3). For example, if the peak of the distribu-
tion appears at the origin, the two modes tend to be syn-
chronized to each other at both starting and ending points.

4.1. Learning the Timing Structure

We consider that two interval sequences, I and I ′, in
media signals, S and S′, are given as a training data set. To
estimate a temporal difference distribution of the mode pair
(Mi,M

′
p), we collect all pairs of overlapping intervals that

have the mode pair (Mi, M
′
p) from the training data. Since

the training data is usually finite in real applications, we fit
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Figure 3. Expression of temporal relations of two intervals.

a density function such as Gaussian mixture models to the
samples.

By computing the distributions of temporal differences
for all possible mode pairs as above, we can obtain funda-
mental characteristics of the cross-media timing structure
of a given data set. That is, we can obtain the following
function F of an interval pair (Ik, I ′k′):

F (Ik, I ′k′) = P (bk − b′k′ = Db, ek − e′k′ = De|
mk = Mi, m

′
k′ = M ′

p, [bk, ek] ∩ [b′k′ , e′k′ ] 6= ∅). (3)

4.2. Evaluation of the Timing Structure

Let us assume that the temporal interval sequences I =
[I1, · · · , IK ] and I ′ = [I ′1, · · · , I ′K′ ] are obtained by seg-
menting newly observed media signals S and S′, respec-
tively. We label the set of the overlapping interval pairs
included in I and I ′ as set P .

To evaluate the timing structure between I and I ′, we
calculate the score of set P based on joint probabilities as
follows:

F̂ (P) =

 ∏
(Ik,I′

k′ )∈P

F (Ik, I ′k′)

 1
n(P)

, (4)

where F is defined in Eq. (3). Note that the score is nor-
malized for the size of set P , n(P). If all the pairs of over-
lapping intervals in P have the similar temporal differences
of the starting and ending points, the score becomes close
to 1. In practice, we take logarithm of F̂ (P) to prevent un-
derflow. Thus, we define the score of a media signal pair
(S, S′) as follows:

E(S, S′) = log F̂ (P) =
1

n(P)

∑
(Ik,I′

k′ )∈P

log F (Ik, I ′k′). (5)

For example, let us consider that two signals, S(X) and
S(Y), are observed in one media (e.g. lip motion of two
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persons in video) and a signal S′ from another media (e.g.
speech sound). Comparing the scores E(S(X), S′) and
E(S(Y), S′), we can estimate which one of S(X) and S(Y)

has more likely timing structure between S′.

5. Experimental Evaluations
To evaluate our proposed method, we conducted two ex-

periments. At first, we obtained the timing-structure model
of human speech from real data of two persons (see the top
layer of Figure 1). Note that we trained a single model by
using the learning data of two speakers. Secondly, as the
first experiment, we evaluated the accuracy of our proposed
method using the data of speech scenes of two persons who
are the same persons in the training data. As the second ex-
periment, we used the speech data of another five persons
and tried to detect the speaker based on the timing-structure
model learned in the first experiment.

5.1. Learning the TimingStructure Model

Data capture. As a training sample set, we used speech
data spoken by two persons. The data recordings were made
in a room with one camera and one microphone (Figure 4).
There were no significant noise sources other than an air
conditioner and PC fans. The video data were captured in
an image of 640 × 480 pixels at 60 fps (a mouth is about
40 × 20 pixels). The sampling rate of the audio signal was
48kHz. Figure 5 shows an example of the captured image.

The total length of training data set was 17010 frames ('
4.7 minutes). In the data, the speakers took a turn after each
utterance of one or two sentences (about 20 or 30 seconds).

Feature extraction. Our final goal is to realize person-
independent speaker detection. Therefore, we need to ob-
tain the timing-structure model for unspecified speakers.
That is, we should use features that are consistent from per-
son to person. As for the video signal, the lip shapes and
the horizontal motions are highly individual. Hence, we
used the frame difference of the vertical-coordinates of the
bottom lip (described by 5 feature points) as the feature vec-
tor of lip motion. We used the Active Appearance Model

Figure 5. An example of the captured video image (training data).
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Figure 6. Examples of (a) a training image to build AAMs, (b)
a captured face images, and (c) face images with tracked feature
points.

(AAM) [3] to extract the feature points of the face in each
image. The AAM is a statistical model that can represent
both the shape and texture variability in a training set, and
can be matched to a target image robustly. Then, we as-
sumed that all the feature points were on the same plane,
and normalized the translation, the rotation, and the scale of
the feature shapes based on singular value decomposition
[1]. Finally, we obtained 5D feature vector sequences.

As for the audio signal, we used the sound power level as
the feature of sound, because power-level patterns are less
affected by the difference of individuals. The time interval
of analysis frame length was 33.3 ms, and the frame shift
was 16.6 ms (it is equal to the video frame rate). We used
HTK Ver.3.4 [14] as an extraction tool, and obtained 1D
feature sequences.

Segmentation of the feature vector sequences. We
trimmed away the parts without utterance in the extracted
feature sequences manually. The total length was 13533
frames, that consisted of 6761 frames of one person’s utter-
ance and 6772 frames of the other’s. Then, we estimated the
parameter of IHDSs and segmented each signal into an in-
terval sequence by the method described in Section 3. The
estimated number of video modes was five, and that of au-
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Figure 8. A result of segmentation of a audio signal.

dio modes was also five. Examples of the segmentation re-
sults are shown in Figure 7 and 8. Thus, the training data
was converted into interval sequences that were labeled by
modes which described the elemental patterns.

Learning the cross-media timing-structure model. Us-
ing the interval sequences of lip motion and sound as signal
S and S′, we computed the distributions of temporal differ-
ence according to the method described in Section 4.1. To
obtain the whole density distributions, we convoluted sam-
ple points with a Gaussian distribution whose standard de-
viation was 3 frames 1. The result is shown in Figure 9.

As an interpretation of the distributions, for example,
we can find that these interval pairs tend to synchronize
at the ending points in the distribution of video-mode 4
and audio-mode 0. Video-mode 4 corresponds to “open-
ing one’s mouth”, and audio-mode 0 corresponds to “no
sound”. Therefore, this distribution indicates that the lip
motion tends to precede the occurrence of speech sound in
human speech.

5.2. Speaker Detection Using the Timing Structure

Using the learned timing-structure model, we evaluated
our method of speaker detection. We newly captured speech
scenes of two persons, X and Y (the same persons in the
training data), and segmented them into interval sequences

1 According to the research on the over all timing tolerance between
video and audio by A. Peregudov et al. [13], the thresholds of acceptability
are about +90 ms (sound leading) to −185 ms (sound delayed). For these
reason, we decided the standard deviation of the Gaussian, σ, as 2σ ' 100
ms ( the frame rate was 60 fps, therefore σ = 3 frames ' 50 ms ).
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Figure 9. A table of temporal difference distributions. Horizontal
(vertical) axis is the starting (ending) points in each distribution.
Both of their ranges are from −50 frames to 50 frames.

by the method described in Section 3.2. We obtained 12
sequences (each had about 2000 frames, the total length was
23831 frames). Note that this test data was recorded in the
same situation with the training data.

Here, let S(v,X) (S(v,Y)) be video signal of person X (Y),
and S(a) be audio signal. In addition, we define 3 terms to
describe the states of lip motion as the followings:

• Utterance : Lip motion of the actual speaker.

• Silence : No lip motion.

• Fake lip motion : Lip motion not related to sound. (e.g.
a change in facial expression or whispering.)

5.2.1 Evaluation Method

Let Ei(S(v), S(a)) be an evaluation function of the timing
structure between the signals, S(v) and S(a). We estimate
the correct speaker based on a comparison of the scores.
That is, if Ei(S(v,X), S(a)) > Ei(S(v,Y), S(a)), we decide that
the speaker is X.

To compare with other methods, we define the following
three functions E1, E2, and E3 (see also Figure 10). Note
that E3 is the proposed method, and we calculate the score
in a time window with T frames.

(a) Mode pair co-occurrence in the same frame. In
the learning phase, we obtain the probability P (m(v)

t =
v,m(a)

t = a) from the training data set, where (v, a) denotes
the mode pair of video and audio signal at a frame index t.
We assume that P (m(v)

t = v,m(a)
t = a) is constant with time

t. In the recognition phase, we use evaluation function E1
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defined by the following equation:

E1(S(v), S(a)) =
1
T

T−1∑
t=0

log P
(
m(v)

t = vt,m
(a)
t = at

)
. (6)

(b) Mode transition probability between the adjacent
frames. Evaluation function E2 uses the mode transition
probability between the adjacent frames in a similar man-
ner as Coupled HMMs. We learn the probability P (m(v)

t =
v,m(a)

t = a|m(v)
t−1 = vp,m

(a)
t−1 = ap) from the training data,

where (vp, ap) is the mode pair at the previous frame t − 1.
Then, in the recognition phase, we use function E2 defined
by the following equation:

E2(S(v), S(a)) =
1

T − 1

T−1∑
t=1

log P
(
m(v)

t = vt,

m(a)
t = at

∣∣∣m(v)
t−1 = vt−1,m

(a)
t−1 = at−1

)
. (7)

(c) Temporal difference distribution of overlapping in-
terval pairs (proposed method). Using the function
shown in Eq. (5), we again define E3 by follows:

P =
{

(I (v)
kv

, I (a)
ka

)
∣∣∣I (v)

kv
∈ I (v), I (a)

ka
∈ I (a),

[b(v)
kv

, e(v)
kv

] ∩ [b(a)
ka

, e(a)
ka

] 6= ∅
}

, (8)

E3(S(v), S(a)) =
1

n(P)

∑
(I (v)

kv
,I (a)

ka
)∈P

log F (I (v)
kv

, I (a)
ka

), (9)

where F (I (v)
kv

, I (a)
ka

) is calculated by the learned temporal dif-
ference distributions in Eq. (3).

Figure 11. Examples of temporal change in the evaluation scores.
The top part of each graph shows the state of lip motion. The upper
graph is the case that no fake lip motion occurs, and the lower one
is the case that fake lip motion is included in most frames.
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5.2.2 Experimental Results

At first, we calculated the evaluation scores of each per-
son by shifting a time window. We set the window size T
180 frames (3 seconds), and the window shift 30 frames.
Figure 11 shows the examples of temporal change in the
scores evaluated by function E3. We can observe that the
score of the speaker was larger than that of the other in most
parts. When the non-speaker was in silence, the difference
between the evaluation scores was particularly large (the up-
per graph in Figure 11).

To evaluate the accuracy of the speaker detection, we ob-
tained the ratio of the correctly detected time windows to the



Table 1. The accuracy by using each evaluation function (see Section 5.2.1). The figure in parenthesis shows the number of data points.
In the evaluated data, the same persons in the learning data (X and Y) were captured. Rsil (Rfak) = the accuracy in the scene that the
non-speaker’s state was silence (fake lip motion). RX (RY) = the accuracy in the scene that the speaker was person X (Y).

Evaluation Function Rsil [%] Rfak [%] RX [%] RY [%] R [%]
E1 55.0 (170) 51.4 (179) 86.1 (309) 13.4 (40) 53.1 (349)
E2 36.2 (112) 49.1 (171) 77.7 (279) 1.3 (4) 43.1 (283)

E3 (proposed method) 94.2 (291) 81.6 (284) 82.2 (295) 94.0 (280) 87.5 (575)

total windows in which either person was speaking. Here,
we describe the accuracy as R. Especially, Rsil (Rfak) de-
notes the accuracy in the scene that the non-speaker’s state
was silence (fake lip motion). RX (RY) denotes the accu-
racy in the scene that the speaker was person X (Y). The
calculated results of Rsil and Rfak are shown in Figure 12,
and Rsil, Rfak, RX, RY, and R are shown in Table 1.

In Figure 12, we can see that the accuracy of the pro-
posed method (E3) is higher than those of the other meth-
ods, regardless of whether the non-speaker was in silent or
with fake lip motion. However, Rsil is over 10 points larger
than Rfak. Furthermore, the average of the score differences
was 34.4 in the scene that the non-speaker was in silent. In
contrast, when the non-speaker was with fake lip motion,
that was 2.2. The reason of such a sharp contrast is that the
interval lengths in silence tend to be long, and the temporal
relations are far from the peak of the learned distributions.

From the accuracy of E1 and E2 in Table 1, we see that
RY was significantly smaller than RX, and the total accu-
racy was about 50%. On the other hand, we can correctly
detect both persons using E3.

5.3. Evaluation on the Generalization Capability

To evaluate whether the learned timing-structure model
can apply to unspecified persons, we additionally captured
speech data of another five persons (person 1, · · · , person
5). The recording situation was the same in Figure 4. The
number of the captured sequences was eight, and the to-
tal length was 12837 frames. In the most parts of the se-
quences, at least one person was in measurable fake lip mo-
tion. An example of the image is shown in Figure 13.

Then, we evaluated these data using the timing-structure
model obtained in the preceding experiment (learned from
the data of person X and Y). The accuracy by using each
evaluation function is shown in Table 2. Here, Ri denotes
the accuracy in the scene that the speaker was person i (i =
1, · · · , 5), and R denotes the total accuracy.

In Table 2, we can find that our proposed method (E3)
detected the speaker more correctly than the other evalua-
tion functions (E1, E2). In the result by using E1 and E2,
there are significant differences between the accuracies of
each person, and thus the total accuracy was very low.

In the result of the proposed method, the accuracies of
person 2 and 5 were both nearly 80 % (' Rfak in the pre-

Figure 13. An example of the captured video image for evaluation
on the generalization capability (the different five persons from the
ones in the training data).

ceding experiment), however, the others were lower (around
50 or 60 %). This result shows that the difference of speech
style may have affected the detection accuracy. For exam-
ple, the average of speech rates of person 2 and 5 were faster
than those of other persons, and were close to that of the
training data.

6. Discussion and Conclusions

We proposed the method of speaker detection by eval-
uating observed data based on the timing-structure model,
which directly describes the co-occurrence and specific tim-
ing differences between lip motion and sound. Although the
current results are still preliminary, we see that the proposed
method detects a speaker with higher accuracy than frame-
wised methods.

We used simple features and a straightforward estimation
method in the experiments to concentrate on evaluating the
effectiveness of the timing structure. The accuracy there-
fore would be improved by considering additional factors,
for example, temporal constraints among time windows and
the difference of speech style (e.g. speech rate, habit of lip
motion).

For practical applications, we however have to investi-
gate more natural and diverse situations where all persons
are in silent, or the cases including temporary lip occlusion
and overlapping utterance. In order to obtain better gener-
alization ability, it will also be worth seeking the extension
of the model learning; for example, the use of larger train-



Table 2. The accuracy by using each evaluation function (see Section 5.2.1). The figure in parenthesis shows the number of data points. In
the evaluated data, the new five persons (person 1, · · · , 5) were captured. Ri = the accuracy in the scene that the speaker was person i.

Evaluation Function R1 [%] R2 [%] R3 [%] R4 [%] R5 [%] R [%]
E1 61.8 (21) 6.3 (4) 53.1 (34) 6.0 (6) 3.5 (2) 21.0 (67)
E2 47.1 (16) 0.0 (0) 32.8 (21) 0.0 (0) 3.5 (2) 12.2 (39)

E3 (proposed method) 51.5 (17) 78.1 (50) 67.2 (43) 64.0 (64) 84.2 (48) 69.8 (222)

ing data with respect to the number of persons and speech
styles would be necessary for practical implementation.
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