
Continuous-time Proportional-Integral Distributed Optimization for
Networked Systems

Greg Drogea1 and Hiroaki Kawashimab and Magnus Egerstedta

aSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
bGraduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.

Email: gregdroge@gatech.edu, kawashima@i.kyoto-u.ac.jp, magnus@gatech.edu
Phone: +1-404-385-4077, +81-75-753-3327, +1-404-894-3484

The work by M. Egerstedt was funded by The Air Force Office of Scientific Research through grant number
[2012-00305-01]

1To whom correspondence should be addressed.

1

Continuous-time Proportional-Integral Distributed Optimization

for Networked Systems

Greg Droge and Hiroaki Kawashima and Magnus Egerstedt

Abstract
In this paper we explore the relationship between dual decomposition and the consensus-based
method for distributed optimization. The relationship is developed by examining the similarities
between the two approaches and their relationship to gradient-based constrained optimization.
By formulating each algorithm in continuous-time, it is seen that both approaches use a gradient
method for optimization with one using a proportional control term and the other using an integral
control term to drive the system to the constraint set. Therefore, a significant contribution of this
paper is to combine these methods to develop a continuous-time proportional-integral distributed
optimization method. Furthermore, we establish convergence using Lyapunov stability techniques
and utilizing properties from the network structure of the multi-agent system.

Keywords
Distributed Optimization, Multi-agent control, Networked-systems

1 Introduction

In recent years, much attention has been given to the control, optimization, and coordination of multi-

agent systems. Multi-agent systems present many challenging problems, while having applications as

diverse as data fusion in sensor networks to multiple robots acting in collaboration, e.g. (Olfati-Saber,

2007; Mesbahi & Egerstedt, 2010; Shamma, 2007; Olfati-Saber & Murray, 2004; Jadbabaie, Lin,

& Morse, 2003). A significant amount of research has been produced on the design of algorithms

to allow agents to collaborate and achieve desirable global properties in a distributed manner, e.g.

(Mesbahi & Egerstedt, 2010; Shamma, 2007; Palomar & Eldar, 2010). In this paper, we will address

the problem of distributed optimization, where agents in the network collaborate to minimize a global

cost and each agent uses only locally available information, defined by the network structure.

While many classifications of distributed optimization algorithms may exist, a distinction has re-

cently been made in both (Wei & Ozdaglar, 2012) and (Kvaternik & Pavel, 2012) that distributed

optimization techniques can be divided between two categories: consensus-based gradient methods

and decomposition or primal-dual methods. The consensus-based approach is characterized by algo-

rithms where, at each time step, every agent takes a gradient step along with an averaging or consen-

sus step to reach agreement on the variables being optimized, e.g. (Kvaternik & Pavel, 2012; Wang

2

& Elia, 2010; Nedic & Ozdaglar, 2009a; Wang & Elia, 2011). In contrast, decomposition methods

distributedly reach agreement by exploiting the dual of the problem, e.g. (Terelius, Topcu, & Murray,

2011; Rantzer, 2007, 2009), which requires the added collaborative update of pricing or dual vari-

ables, e.g. (Nedic & Ozdaglar, 2009b; Luenberger & Ye, 2008; Boyd, 2004). Of particular interest is

the decomposition method for multi-agent systems presented in (Terelius et al., 2011) along with the

gradient-based solution for dual problems first presented in (Arrow, Hurwicz, & Uzawa, 1958). When

combined, these methods allow for a gradient-based multi-agent distributed optimization technique

that, for simplicity, we refer to as dual-decomposition.

In this paper, we show that the consensus-based and dual-decomposition gradient algorithms

are actually very closely related when examined in context of the underlying constrained optimiza-

tion problem that is solved by these methods. Specifically, we formulate both the mentioned dual-

decomposition method and the consensus-based method in (Kvaternik & Pavel, 2012) in control the-

oretic terms to draw parallels and gain intuition behind why they can naturally be joined together. In

fact, it will become apparent that dual-decomposition is very closely related to integral (I) control and

the consensus method is closely related to proportional (P) control. Therefore, a significant contribu-

tion of this paper is to combine these two methods to form a new, proportional-integral (PI) distributed

optimization method. This formulation will be similar to the PI distributed optimization method in-

troduced in (Wang & Elia, 2010) and extended in (Wang & Elia, 2011; Gharesifard & Cortés, 2012).

However, due to the fact that we create the PI optimization method from the perspective of the dual-

decomposition method, which involves a set of constraints associated with the interconnections of

agents, it enables us to form a different type of integral control term and reduce the required commu-

nication.

While much of the work on distributed optimization has been developed in discrete-time formu-

lations, which are amenable for implementation, e.g. (Wei & Ozdaglar, 2012; Nedic & Ozdaglar,

2009a; Terelius et al., 2011; Lobel & Ozdaglar, 2008), a great deal of work recently has been made in

continuous-time (Kvaternik & Pavel, 2012; Wang & Elia, 2010, 2011; Rantzer, 2007, 2009; Kvaternik

& Pavel, 2011; Gharesifard & Cortés, 2012). Continuous-time analysis has proven useful as it allows

Lyapunov stability conditions to be directly applied to the update-equations for convergence analysis.

It also allows for an intuitive connection between the optimization algorithm proposed in this paper

and proportional-integral control. Moreover, a discretization of the framework proposed in this pa-

per does not pose a significant contribution. The proportional element has been evaluated in discrete

time in (Nedic & Ozdaglar, 2009a) and the integral element has been evaluated in discrete time in

3

(Terelius et al., 2011; Rantzer, 2007, 2009). Furthermore, a closely related PI distributed optimization

algorithm developed in (Wang & Elia, 2010, 2011; Gharesifard & Cortés, 2012) (discussed further in

Section 5.1) was discretized in (Wang & Elia, 2010).

The remainder of this paper will proceed as follows. We first introduce the necessary background

material for the analysis of the distributed optimization algorithms, including the problem formula-

tion, the graph-based multi-agent model of the network, and a parallel to gradient-based constrained

optimization. This background will allow us to present both dual-decomposition and the consensus

based method in Sections 3 and 4. These two methods are then combined in Section 5 to create a PI

distributed optimization method. We further develop this method by presenting a formulation which is

scalable to a larger class of multi-agent systems in Section 6. The paper is then concluded with some

final remarks in Section 7.

2 Preliminaries

This section introduces the background information necessary to characterize PI distributed optimiza-

tion. It begins with the formulation of the distributed optimization problem that is addressed in this

paper. Following this, the graph-based model of the multi-agent network will be introduced. Gradient-

based constrained optimization is then discussed from a high level viewpoint to develop intuition about

the underlying relationship between dual-decomposition and the consensus based method. As simi-

larities to PI control will become readily apparent, this section ends with a brief introduction of the PI

control metrics that are used to compare these methods.

2.1 Problem formulation

We address the distributed optimization methods in terms of the problem formulation presented in

(Nedic & Ozdaglar, 2009a) and continued in (Kvaternik & Pavel, 2012; Wang & Elia, 2010, 2011;

Sundhar Ram, Nedić, & Veeravalli, 2010; Gharesifard & Cortés, 2012; Kvaternik & Pavel, 2011).

Specifically, assume that the function to be optimized is a summation of strictly-convex costs, i.e.

min
x

N∑
i=1

fi(x), (1)

where x ∈ Rn is the parameter vector being optimized, N is the number of agents, and agent i only

knows its individual cost, fi(x). The individual costs can be derived naturally from a distributed

4

problem as done in (Palomar & Eldar, 2010) for resource allocation, or can be “designed” as done,

for example, in (Keviczky, Borrelli, & Balas, 2006; Droge & Egerstedt, 2013), where a central cost is

split into separable components which are then assigned to the individual agents.

To be able to establish convergence to the global minimum certain convexity assumptions are

made on the cost. Note that a convex function is defined as a function that satisfies:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (2)

where 0 < θ < 1. A function is strictly-convex if strict inequality holds in (2) (see, for example,

(Boyd, 2004) for a thorough overview of convex functions and their properties). The following as-

sumptions about the costs are used throughout the paper:

Assumption 1. fi(x) : Rn → R, i ∈ {1, ..., N}, are convex, twice continuously differentiable func-

tions and the summation
∑N

i=1 fi(x) is strictly-convex, twice continuously differntiable function.

Assumption 2. The solution f∗ = minx
∑N

i=1 fi(x) and respective optimal parameter vector, x∗,

exist and are finite.

Remark 1. We note that the differentiability assumption has been relaxed in many of the references to

address subgradient optimization. However, we do not concern ourselves with relaxing this assump-

tion as it does not add to the development of the paper.

For sake of clarifying the notation, one key point must be stressed. To perform distributed opti-

mization, each agent will maintain its “own version” of the variables, denoted as xi ∈ Rn, with the

constraint that xi = xj ∀ i, j ∈ {1, ..., N}. This will allow (1) to be expressed as

min
xi,i=1,...,N

N∑
i=1

fi(xi). (3)

s.t. xi = xj ∀ i, j ∈ {1, ..., N}

To perform the optimization in a distributed manner, the equality constraints are relaxed. Algorithms

differ in the manner that they force agents to return to the constraint set.

2.2 Networked multi-agent systems

We now introduce the terminology and properties of multi-agent systems that will be used to formulate

the distributed optimization algorithms and discuss their convergence. The term “agent” is used to

5

refer to a computing component and it is assumed that agents only communicate with each other

through a defined, static network topology. This is representative of a great number of different multi-

agent systems, from communication networks to teams of robots, e.g. (Mesbahi & Egerstedt, 2010;

Shamma, 2007; Rantzer, 2009).

The interconnections of the network are represented through an undirected graph G(V, E). The

set of nodes, V , is defined such that vi ∈ V corresponds to agent i. Communication constraints are

represented through the set of edges in the graph, E ⊆ V × V , where (vi, vj) ∈ E iff agents i and

j can directly communicate. The number of agents is then given by |V| = N and the number of

communication links is given by |E| = M . To prove convergence of the distributed optimization

methods, the following assumption on the graph topology is made

Assumption 3. The graph G(V, E) is connected.

Associated with this graph are two important, and related matrices. The first is the incidence

matrix, D ∈ RN×M which is formed by arbitrarily assigning an orientation to each edge and can be

defined as

D = [dik] =

1 edge k points to node i

−1 edge k originates at node i

0 otherwise

. (4)

The second matrix, the graph Laplacian, is closely related to D and can be defined as L = LT =

DDT ∈ RN×N . Note that the resulting values for the elements of L are independent of the orientation

assigned to each edge, (Mesbahi & Egerstedt, 2010).

We utilize both the incidence matrix and the graph Laplacian to form larger, aggregate matrices

to incorporate the fact that each agent will be maintaining an entire vector of values. First, let xij

denote the jth element of xi, zj , [x1j , x2j , ..., xNj]
T is the combination of all the jth elements, and

z , [zT1 , ..., z
T
n]T ∈ RNn is the aggregate state vector. The aggregate matrices can then be written

as D , In ⊗ D and L , In ⊗ L. This notation expresses the concept that an aggregate graph

is formed where there are n replicas of G, each corresponding to one of the elements of the vector

being optimized. The aggregate graph will not be connected, but have n connected components,

given Assumption 3. Therefore, the aggregate Laplacian will have the following properties (see, for

example, (Mesbahi & Egerstedt, 2010)):

(1) L = LT = DDT

6

(2) L � 0

(3) The eigenvectors associated with the zero eigenvalues of the aggregate Laplacian are α ⊗ 1,

where α ∈ Rn

(4) If ż = −Lz, the solution, z̄ = z(t) as t −→ ∞, will be the projection of z(0) onto the set

α ⊗ 1 for α ∈ Rn. Moreover, the vector −Lz will point along a line orthogonal to the set

{α⊗ 1|α ∈ Rn}.

One further property that will be exploited throughout the paper comes from the incidence matrix.

The constraint in (3) that xi = xj ∀ i, j ∈ {1, ..., N} can be written as DT z = 0. This can be

verified by first considering the scalar case where n = 1 and D = D. DT z = 0 will enforce that

xk1 − xk2 = 0, where k1 and k2 correspond to the verticies associated with edge k. Then through

Assumption 3, xi = xj ∀ i, j ∈ {1, ..., N}. The same argument can be extended to n > 1 case by

noting that:

DT z =

DT z1

...

DT zn

 .
Finally, this notation allows the distributed optimization problem to be presented in a compact

form:

min
z
f(z)

s.t. h(z) = 0.

(5)

where f(z) =
∑N

i=1 fi(xi) and h(z) = DT z.

2.3 PI control as gradient method for constrained optimization

We now take note of the structure of (5) to give intuition to the relationship between the gradient

methods presented in Sections 3 and 4. The development in this section will not dwell on the details

of constrained optimization, as it has been a widely studied area, e.g. (Luenberger & Ye, 2008; Boyd,

2004). Rather, it will be focused on forming a control law to return the state to the constraint set when

the constraints are relaxed.

Without constraints, a gradient method for optimization of the problem would simply take the form

ż = −kG ∂f∂z
T

, where kG ∈ R+ is some gain. However, when the optimization includes constraints,

7

x
1

x 2

−2.5 −2 −1.5 −1
−2.2

−2

−1.8

−1.6

−1.4

−1.2

x
1

x 2

−2 0 2
−3

−2

−1

0

1

2

3

Figure 1: This figure shows the results of using the cost f(z) = (x1 − 1)2 + (x2 + 1)2. Left: Dotted
line shows the equality constraint and the arrows show the gradient and projected gradient. Right:
Result of performing the PI gradient method for optimization given in (8). The trajectory of the two
states is shown ending in the final condition denoted by the solid circle and the constraint is shown as
a dotted line. The arrows show the final gradient and Lagrange multiplier multiplied by the constraint.
As expected, these are equal in magnitude, but opposite in direction.

the update to the variables being optimized cannot be in any arbitrary direction. The update can only

occur in a direction that will allow the state to continue to satisfy the constraint. As the constraints in

(5) are linear, this involves taking the gradient and projecting it onto the constraint space, as shown in

Figure 1.

It should be noted that the difference between an unconstrained gradient and a constrained gradient

could be written in terms of the addition of a term perpendicular to the constraint set. This could be

expressed as ∂f
∂z + λT ∂h∂z = ∂f

∂z + λTDT . The dynamics of the resulting optimization would then be

ż = −kG(
∂f

∂z

T

+ Dλ(t)). (6)

However, computing λ(t) in a distributed fashion could be difficult as it may require knowledge from

the entire network.

Alternatively, if the gradient method is permitted to violate the constraint, control terms can be

added to guide the state back to the constraint at the optimal point. The first term we consider is a term

proportional to the error from the constraint. Allow λ(t) = kP
kG
e(t) where e(t) = DT z(t) is the error

at each edge of the graph. This can be seen to be a logical choice because, as mentioned in Section 2.2,

−De(t) = −Lz(t) will point along a line orthogonal to the constraint set. In other words, it points in

the right direction, but with possibly the wrong magnitude. This gives the dynamics

ż = −kG
∂f

∂z
(z)− kPDe(t) = −kG

∂f

∂z
(z)− kPLz(t). (7)

8

As will be discussed in Section 4, the similarity of (7) to proportional control is perpetuated in that

the steady-state solution will have a constant error from the desired optimal point. Basically, the effort

produced by introducing an error term proportional to the deviation from the constraint will fall short

of the needed effort to drive the state all of the way to the constraint set.

To compensate for the steady state error, it is common to add an integral term to the control,

e.g. (Franklin, Powell, & Emami-Naeini, 2001). This would lead to a λ(t) of the form λ(t) =

kP
kG
e(t) + kI

kG

∫ t
t0
e(s)ds. Over time, the integral term will build up the necessary effort to reach the

constraint. With this additional term, the dynamics of the system can be expressed as

ż = −kG
∂f

∂z

T

− D
(
kP e(t) + kI

∫ t

t0

e(s)ds
)

= −kG
∂f

∂z

T

− kPLT z − kIL
∫ t

t0

z(s)ds. (8)

It will be shown in Section 5 that under Assumptions 1, 2, and 3, the dynamics in (8) will indeed

converge to a global minimum, as shown in Figure 1.

While this method for obtaining a gradient strategy to arrive at the desired optimal value may

seem somewhat trivial or ad-hoc, it will be seen in Section 3 that the dual-decomposition distributed

optimization method will exactly correspond to adding an integral term. Similarly, in Section 4, it is

shown that the consensus-based method will be exactly the proportional term. Therefore, we combine

the two methods in Section 5 to form a PI distributed optimization method.

2.4 PI performance metrics

As the distributed control laws developed throughout the remainder of this paper are closely related

to proportional and integral control laws, we give a brief introduction to the performance metrics that

will be employed for comparison. These metrics are important as there really is no single metric

which best determines which control law is most suitable. For example, as discussed in (Franklin et

al., 2001), proportional control can converge quickly, but may result in a steady-state error. As the

proportional gain is increased, the steady-state error will typically decrease up to the point where the

system becomes unstable. On the other hand, integral control can be introduced to eliminate steady-

state error, but dampening will be decreased and this will result in greater oscillation, overshoot, and

slower convergence.

Therefore, to say that one method is “better” would required a reference to a specific application.

To be able to judge which method is more suitable for the given application, the following performance

metrics, typical for classic control evaluation (e.g. (Franklin et al., 2001)), are used:

9

• Percent overshoot (Mp): The percentage of the distance that the state overshoots the final value,

given as xmax−xf
xf−x0 × 100.

• Settling time (t10 and t1): Time it takes for the state to converge to within 10 percent and 1

percent of the final value. For example, t10 is the smallest t such that .9 xf
xf−x0 < x(t) <

1.1
xf

xf−x0 ∀ t > t10.

• Percent error (% error): The percentage of error from the optimal value (|x
∗−xf |
xf−x0 × 100).

where x0 is the initial value, xf is the final value, and xmax is the maximum value reached. For

simplicity, we have assumed xmax ≥ xf > x0. As these values are measures of scalar states, the

worst case over all agents will be presented in each evaluation.

Also note that numerical results depend upon the value of the gains and initial conditions. To allow

for a fair comparison between examples throughout the paper, all gains (kG, kP , and kI) are assigned

a value of 1. Similarly, all initial conditions are assigned a value of 0, unless otherwise stated.

3 Dual decomposition

This section introduces the concept of gradient-based distributed optimization through the introduction

of dual-decomposition, which has been used in a variety of different applications, e.g. (Palomar &

Eldar, 2010; Wang & Elia, 2010; Terelius et al., 2011; Droge & Egerstedt, 2013; Rantzer, 2009;

Giselsson & Rantzer, 2010). Notation, examples, and proofs are given which will allow for a concise

development of the distributed optimization methods in Sections 4 and 5.

As already mentioned, dual-decomposition will be akin to integral control for constrained opti-

mization. However, to provide intuition as to the origins and the theoretical underpinnings of this

method, it is presented here in a more typical fashion relying upon the theory of dual-optimization,

e.g. (Luenberger & Ye, 2008; Boyd, 2004). The formulation introduced here is closely related to that

found in (Terelius et al., 2011), except that we use Uzawa’s saddle point method, (Arrow et al., 1958),

to update both the parameters and dual variables simultaneously. This permits a continuous-time for-

mulation where Lyapunov methods can be readily applied to establish convergence. After presenting

the algorithm, the relation to integral control will be evaluated. This section will end with a distributed

implementation and a numerical example.

10

3.1 Dual-decomposition for networked systems

The basic idea behind dual decomposition is to introduce n copies of the variables, with the constraint

that the copies be equal. The dual is then formed to relax the added constraints and a max min

optimization technique is used to solve the dual problem. In this paper, we use a gradient method

introduced in (Arrow et al., 1958) for saddle point finding. This will allow for a distributed solution

to the problem where each agent uses only local information defined by the network graph, G.

The dual problem to (3) can be formed by introducing a Lagrange multiplier vector, µk ∈ Rn,

k = 1, ...,M , for each edge in G. It can be written as:

max
µk,k=1,...,M

min
xi,i=1,...,N

{
kG

N∑
i=1

fi(xi) + k′I

M∑
k=1

µTk (xk1 − xk2)

}
(9)

where, again, the subscripts k1 and k2 correspond to the agents which make up the kth edge and

kG, k
′
I > 0 are constant gains. Note that due to the constraint equaling zero, k′I has no influence

and kG scales the cost, but does not change the location of the optimal point. Equation (9) can be

simplified by forming an aggregate Lagrange multiplier vector, µ ∈ RMn, in the same fashion that the

aggregate state, z, was formed. This allows us to reintroduce the constraint as DT z = 0 and rewrite

(9) as:

max
µ

min
z
F (z, µ) = kGf(z) + k′Iz

TDµ. (10)

To solve this max-min problem, we use a technique first developed in (Arrow et al., 1958) for

saddle point finding and has more recently gained attention for its applicability to distributed opti-

mization, e.g. (Wang & Elia, 2010, 2011; Rantzer, 2009, 2007). The basic idea behind this approach

is that dynamics can be assigned to the variables being optimized and convergence can be established

using control methods such as Lyapunov stability.

For a saddle point finding problem, where F (z, µ) is strictly-convex in z and strictly concave in

µ, (Arrow et al., 1958) shows that applying the dynamics

ż = −∂F
∂z

T

, µ̇ =
∂F

∂µ

T

, (11)

the system will converge asymptotically to the saddle point. Taking the partials of (10), the dynamics

can be expressed as:

ż = −kG
∂f

∂z

T

− k′IDµ (12)

11

µ̇ = k′IDT z. (13)

However, we note that (10) is not strictly concave in µ, rather, it is linear. This requires further evalua-

tion, which is done in the proofs of Theorems 1 and 2. While there exist proofs for dual-decomposition,

e.g. (Palomar & Eldar, 2010; Feijer & Paganini, 2010), we present an alternative proof here to show

the relationship of dual-decomposition to the underlying constrained optimization problem. This will

allow us to easily extend these proofs in Section 5 for the PI distributed optimization method that

will be developed. The proofs use the same Lyapunov candidate function as (Rantzer, 2007; Feijer

& Paganini, 2010) to prove convergence, but differ in the application of Lasalle’s invariance principal

and the proof that the equilibrium reached is the global minimum.

Theorem 1. Given Assumptions 1, 2, and 3 as well as the dynamics in (12) and (13), the saddle point

(ż, µ̇) = (0, 0) is globally asymptotically stable.

Proof. Using the candidate Lyapunov function V = 1
2(żT ż + µ̇T µ̇), V̇ can be written as:

V̇ = żT z̈ + µ̇T µ̈ = −żT
(
kG
∂2f

∂z2
ż + k′IDµ̇

)
+k′I µ̇

TDT ż

= −kGżT
∂2f

∂z2
ż = −żTH(z)ż ≤ 0 ∀ż, µ̇

(14)

where H(z) = kG
∂2f
∂z2
� 0 due to strict convexity given by Assumption 1. As there is no dependence

upon µ̇ in V̇ , LaSalle’s invariance principle must be used to show convergence to (ż, µ̇) = (0, 0).

Let the set where V̇ = 0 be denoted as

S = {(ż, µ̇)|V̇ = 0} = {(ż = 0, µ̇ ∈ RMn)} (15)

To see that that the only solution in which the complete state (ż, µ̇) can remain in S is the equilibrium

(0, 0), use the fact that to stay in S ⇒ ż = 0 ∀t⇒ z̈ = 0. From this we see that

z̈ = −H(z)ż − k′IDµ̇ = −kIDDT z = −kILz = 0,

where k′2I = kI . For the connected graph, the only z such that −Lz = 0 is z = α⊗ 1, α ∈ Rn. This

shows two things:

(1) xi = xj ∀i, j which means that the agents reach consensus.

(2) µ̇ = k′IDT (α ⊗ 1) = 0 which shows that the only possible value for µ̇ which stays in S is

12

µ̇ = 0.

Since V is radially unbounded, this completes the proof.

Theorem 2. Given Assumptions 1, 2, and 3 as well as the dynamics in (12) and (13), the saddle point

(ż, µ̇) = (0, 0) corresponds to the global minimum.

Proof. To validate that a feasible solution is a local extremum, z∗, of a constrained optimization

problem it is sufficient to show that z∗ corresponds to a regular point (i.e. rows of ∂h∂z (z∗) are linearly

independent) and there exists λ∗ such that

0 =
∂f

∂z
(z∗) + λ∗T

∂h

∂z
(16)

where h(z) = 0 is the constraint and f(z) is the cost, (see (Luenberger & Ye, 2008) for a discussion on

local extremum and regular points). Due to Assumption 1, the only extremum is the global minimum.

Therefore, this proof is performed in two steps. First, we show that the saddle point corresponds to a

feasible point satisfying (16), then we show that the saddle point is indeed a regular point.

The proof of Theorem 1 showed that (ż, µ̇) = (0, 0) implies that consensus is reached. Thus, the

constraints are satisfied and the saddle point is feasible. Also, by noting that ∂h∂z = DT for the problem

at hand, (12) gives us

ż = 0 = −kG
∂f

∂z

T

− k′I
∂h

∂z

T

µ⇒ 0 = kG
∂f

∂z
+ k′Iµ

T ∂h

∂z
. (17)

Allowing λ =
k′I
kG
µ, (16) is satisfied.

The saddle point must now be shown to be a regular point. To do so, we show that the convergent

point is a regular point to the problem in which edges are removed from G to form a minimum spanning

tree (for undirected graphs, a minimum spanning tree is a connected graph with N nodes and N − 1

edges, e.g. (Mesbahi & Egerstedt, 2010)). Due to Assumption 3, a minimum spanning tree, GT , exists

such that ET ⊂ E . The saddle point is shown to be regular by first showing that the representation of

the constraints using GT , i.e. DTT z = 0, is linearly independent and then showing that if a λ can be

found to satisfy (16) for G, a λT can be found to satisfy (16) for GT .

Let DT ∈ RN×N−1 be the incidence matrix associated with GT . The graph Laplacian for a

connected graph with N nodes always has rank N − 1, (Mesbahi & Egerstedt, 2010). Therefore, DT

has full rank, which for n = 1, gives that DT
T z = 0 is a linearly independent set of constraints. For

13

n > 1, DT = In ⊗ DT , and, as noted in Section 2.2, DTT z =

DT
T z1
...

DT
T zn

 which will also be linearly

independent.

Without loss of generality, we can assume that D =
[
DT DR

]
where DR containts the “re-

dundant” edges not contained in GT . Since DT has the same rank as D, the columns in DR can

be expressed as linear combinations of the columns of DT . In other words, DR = DT δ, where

δ ∈ RN−1×M−N+1.

Without loss of generality, assume the elements in z have been rearranged to writeD =
[
DT DR

]
,

where DR = In ⊗DR. Since DR = DT δ, DR can be expressed as DT∆, where ∆ = 1⊗ δ. We can

separate λ as λ =

λ′
λ′′

 which allows us to write Dλ = DTλ′+DRλ′′ = DTλ′+DT∆λ′′. Therefore,

if a λ is found such that (16) is satisfied for G, λT can be defined as λT = λ′+∆λ′′. Thus, the solution

is a regular point for the constraint DTT z = 0.

3.2 Integral control

With the optimization framework in hand, the loop can be closed on the discussion begun in Section

2.3 by relating the dynamics in (12) and (13) to integral control. Note that the Lagrange multiplier, µ,

can be expressed as follows (assuming µ(t0) = 0):

µ(t) =

∫ t

t0

µ̇(τ)dτ =

∫ t

t0

k′IDT z(τ)dτ = k′IDT
∫ t

t0

z(τ)dτ. (18)

This allows ż to be expressed as:

ż(t) = −kG
∂f

∂z

T

− kIDDT
∫ t

t0

z(τ)dτ = −kG
∂f

∂z

T

− kIL
∫ t

t0

z(τ)dτ, (19)

which gives the same result obtained in (8) assuming kP = 0. After closer inspection of (13), one can

see that the Lagrange multiplier, µ is indeed the integral of the weighted error referred to in Section

2.3.

3.3 Distributed implementation

While the analysis of this method has been performed from the point of view of the entire system,

its utility as a distributed optimization technique would be questionable if it were not possible for the

14

algorithm to be executed by each agent using only local information. Therefore, we now present the

algorithm in terms of implementation of a single agent and discuss the information and communication

requirements.

Equations (12) and (13) can be written in terms of execution by a single agent, i, as follows:

ẋi = −kG
∂fi
∂x

T

(xi)− k′I
∑
j∈Ni

µji , (20)

µ̇ji = k′I(xi − xj), (21)

where for simplification we have introduced the Lagrange multiplier variables µji = −µij = di,kijµkij

where kij is the edge connecting agents i and j and it is assumed that µk(0) = 0, k = 1, ...,M .1

Note that Ni denotes agent i’s neighborhood set, or agents with which agent i can communicate.

By inspection, agent i can compute ẋi and µ̇ji ∀ j ∈ Ni using only its own state and the states of

its neighbors. Therefore, we emphasize that the only piece of information that an agent needs to

communicate with its neighbors is its version of the state vector.

3.4 Example

To illustrate behaviors typical of dual decomposition, we give a numerical example. Let the individual

costs be defined as follows:

f1(x1) = (x11 − 1)2 +
1

3
(x11 − x12)2,

f2(x2) = (x22 − 3)2 +
1

3
(x21 − x22)2,

f3(x3) = (x31 − 6)2 +
1

3
(x31 − x32)2.

(22)

where xi =
[
xi1 xi2

]T
and the network structure takes the form of the line graph shown in Figure

2. In other words, agents 1 and 2 as well as 2 and 3 can communicate, but agents 1 and 3 cannot.

The global cost is given by
∑3

i=1 fi(xi), where x1 = x2 = x3, has the optimal solution of x∗ =[
3.4 3.2

]T
.

Figure 3 and Table 1 show the results of employing these dynamics. As seen in Figure 3, there is

oscillation in the solution as the different agents communicate and vary their values. This oscillation

is quite typical of dual-decomposition (Rantzer, 2007), and it will be seen that the oscillation increases

1By uniqueness of solutions to differential equations, µ̇j
i (t) = −µ̇

i
j(t) ∀t

15

1 2 3

Figure 2: This figure depicts the “Line” network structure used for the examples in Sections 3, 4, and
5

0 5 10 15
0

5

x 1

0 5 10 15
0

5
x 2

0 5 10 15
−10

0
10

Time (sec)

µ

Figure 3: This figure shows the results from the convex optimization example using dual-
decomposition

with an increase in problem complexity and number of agents in Section 6.Table 1 shows that the I

control (corresponding to dual-decomposition) has a large overshooot and slower settling times when

compared with the P and PI control laws (which are discussed in Sections 4 and 5). This is to be

expected as the integral term will decrease the dampening of the system (Franklin et al., 2001). More-

over, as expected, Table 1 shows that there is zero steady-state error when using dual decomposition.

4 Consensus based distributed optimization

This section introduces the consensus-based distributed optimization technique, first outlined in (Nedic

& Ozdaglar, 2009a), which will give the proportional component in the new PI distributed optimiza-

tion method. After formulating the algorithm in terms of notation presented in previous sections,

characteristics of the convergence are discussed in terms of the constrained optimization problem.

This section will end by resuming the example started in the previous section to present a comparison

between the distributed optimization methods.

4.1 Consensus based algorithm

While originally given in discrete time, we present the consensus based distributed optimization prob-

lem in continuous time as done in (Kvaternik & Pavel, 2012) to maintain consistent notation. In stark

16

contrast to the development of dual-decomposition, the consensus-based method was not designed

from existing optimization methods. Rather, it was directly developed for networked, multi-agent

systems. The foundation of this concept is that the consensus equation, a core equation in many multi-

agent designs, e.g. (Mesbahi & Egerstedt, 2010; Olfati-Saber & Murray, 2004; Jadbabaie et al., 2003),

can be used to force agreement between different agents. Therefore, the basic idea is for each agent to

combine a step in the gradient direction with a step in the direction of consensus.

As the consensus method was developed for the multi-agent scenario, it can immediately be ex-

pressed in a distributed fashion as

ẋi = −kG
∂fi
∂x

(xi)−
∑
j∈Ni

αij(xi − xj), (23)

where αij is the weighting that agent i associates with the edge of the graph connecting itself to agent

j. Assuming equal weighting on all edges, i.e. αij = kP ∀ (vi, vj) ∈ E , the consensus based method

can be stated for the aggregate state dynamics as:

ż = −kPLz − kG
∂f

∂z

T

. (24)

From this expression of the aggregate dynamics, we immediately see that the consensus term is the

proportional term given in (8).

We do not present a proof of this method as it does not add to the development in this paper. For

the discrete-time analog to (24), using a diminishing or adaptive step-size rule2 for determining kG

at each iteration of the optimization would cause the agents to converge to the optimal value. For

the continuous case, (Kvaternik & Pavel, 2012) proves that agents can come arbitrarily close to the

optimum by choosing kG
kP

to be “sufficiently small.”

The diminishing step-size condition has been observed to be a possible deterrent of quick conver-

gence of the algorithm, e.g. (Wang & Elia, 2010; Nedic & Ozdaglar, 2009a; Wang & Elia, 2011).

To balance a tradeoff between convergence and optimality, (Nedic & Ozdaglar, 2009a) proposed a

scheme of changing kG during execution to get closer to the optimal point. The basic idea is that

a constant gain often will result in the state approaching a steady-state value in relatively few steps.

Once the state is “close enough” to the steady-state then the gain is changed to zero to allow the agents

to reach consensus. They prove that the longer the agents wait to switch to the zero gain, the closer
2Section 4 is the only section which consideres the gain kG to be time-varying. Throughout the rest of the paper, all

gains (kG, kI , and kP) are considered constant.

17

they will come to the optimal value, but will suffer in convergence rate.

4.2 Consensus method and constrained optimization

We now examine this tradeoff further in terms of the underlying constrained optimization problem

given in Section 2.3. This will give insight into the effect of the contribution of the proportional term

and the benefit of including an integral term, which is done in Section 5.

To perform this analysis, assume that z̄ is the steady-state result of executing (24) as t −→ ∞.

Such a z̄ is known to exist due to the analysis in (Kvaternik & Pavel, 2012). At z̄, (24) will give

ż = 0 = −kPLz̄ − kG
∂f

∂z

T

(z̄)⇒ 0 =
kP
kG

Lz̄ +
∂f

∂z

T

(z̄). (25)

Using the fact that L = LT = DDT , (25) can be expressed as 0 = ∂f
∂z + kP

kG
z̄TDDT . Now,

let λT = kP
kG
z̄TD and recall that ∂h

∂z = DT , where h(z) = 0 is the equality constraint. This gives

0 = ∂f
∂z + λT ∂h∂z as in (16). While this satisfies part of the condition for determining an extreme point,

z̄ will not be optimal as consensus will not be reached, resulting in the constraints not being met,

(Kvaternik & Pavel, 2012).

As discussed in Section 2.2, Lz will always point along lines perpendicular to the constraint set.

This means that z̄ will be a point where ∂f
∂z (z̄) points along a line perpendicular to the constraint set.

Now, let z̄′ = z(t) as t −→ ∞ where ż = −Lz and z(0) = z̄. Since Lz points directly to the

constraint set, z̄′ will be the point of intersection of the constraint set orthogonal to z̄. Therefore, if

f(z) is such that the gradient will always point directly at the unconstrained optimal point, then the

result of the optimization strategy proposed in (Nedic & Ozdaglar, 2009a) can converge arbitrarily

close to the optimal value. An example of such a convex function is shown in Figure 1.

More important to our discussion is that a constantly weighted consensus term will not have

enough control authority to pull the state of the system all of the way to the optimal point. How-

ever, it will help to guide the state to, and maintain it on, a line in which the only additional control

effort need be in the direction of consensus. This further motivates the choice of adding an integral

control term.

4.3 Example

We continue the example started in Section 3 using the consensus-based distributed optimization. Two

scenarios are shown for the gain: kG = 1 which violates the diminishing or adaptive gain requirement

18

0 5 10 15
0

5

x 1

0 5 10 15
0

5

x 2

0 5 10 15
0
1
2

Time (sec)

γ
0 500 1000

0

5

x 1

0 500 1000
0

5

x 2

0 500 1000
0

0.5
1

Time (sec)

γ

Figure 4: This figure shows the result of optimizing using consensus for the problem given in (22) for
both a constant and fading value for kG on the left and right respectively

and kG = 1
1+.1t which satisfies the requirement. The results are shown in Figure 4 and Table 1. The

constant gain example exhibits the very desirable attribute of quick convergence, however suffers in

performance as the values do not converge and the optimal value is not reached. On the other hand,

the fading gain example shows that the optimal values can be achieved, but convergence suffers as

expected. Both exhibit the desirable attribute of very little oscillation in the solution, however, the

fading gain does show a significant increase in overshoot.

Remark 2. In presenting examples throughout the remainder of the paper, the results from both a

constant and a diminishing gain will be shown. We do this instead of trying to tune the “stopping”

criteria given in (Nedic & Ozdaglar, 2009a). The result of a constant gain will emphasize the possible

convergence rate and a diminishing gain will emphasize the ability to reach optimality.

5 PI distributed optimization

In Sections 3 and 4, dual decomposition and the consensus method for distributed optimization were

introduced and the parallel to integral and proportional control laws was seen. In this section, we show

that these two methods can be combined to create a new distributed optimization method which is

guaranteed to converge to the global minimum, much like integral control can be added to proportional

control to achieve zero steady-state error with good convergence properties.

This section begins by developing the PI distributed optimization method and proving that it con-

verges to the global minimum. The relationship to PI control is then discussed and the example of the

previous two sections is finished.

19

5.1 PI distributed optimization algorithm

The PI distributed optimization algorithm is formed by noting that the dual-decomposition method

discussed in Section 3 shares similar structure with the consensus method discussed in Section 4.

Each has a gradient term along with an additional term added to enforce equality between agents.

Dual-decomposition guarantees convergence to the goal, but has an undesirable transient, oscillatory

behavior. On the other hand, the consensus method does not converge under constant gains, but has a

much more damped transient response. Therefore, we join the two methods in a desire to achieve the

benefits of each.

Combining equations (12) and (13) with (24), the aggregate dynamics can be expressed as

ż = −kG
∂f

∂z

T

− kPLz − k′IDµ

µ̇ = k′IDT z.
(26)

Similarly, (20) and (21) can be combined with (23) to get a distributed implementation as follows:

ẋi = −kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)− k′I
∑
j∈Ni

µji . (27)

µ̇ji = k′I(xi − xj) (28)

where we again define µji as in (21). As in Sections 3 and 4, the only information exchange required

between agents is the exchange of the state vectors between neighboring agents.

To show convergence to the global minimum, we give the following two theorems.

Theorem 3. Given Assumptions 1, 2, and 3 as well as the dynamics in (26), the saddle point (ż, µ̇) =

(0, 0) is globally asymptotically stable.

Proof. The same proof can be used as was used in Theorem 1 with two modifications.

(1) H(z) = kG
∂2f
∂z2

+ kPL, but H(z) � 0 still holds.

(2) z̈ = −kG ∂
2f
∂z2

ż − kPLż − k′IDµ̇ which when ż = 0 still simplifies to z̈ = −k′IDµ̇

Theorem 4. Given Assumptions 1, 2, and 3 as well as the dynamics in (26), the saddle point (ż, µ̇) =

(0, 0) corresponds to the global minimum.

20

Proof. The same proof can be used as was used in Theorem 2 by noting for a feasible solution, Lz = 0.

This will give the same equation for ż as given in (17).

The proofs of Theorems 3 and 4 basically show that adding the consensus term does not break the

convergence properties of the dual-decomposition method of Section 3, but do nothing to speak of the

benefit of adding the consensus term. To see the benefit of the consensus term, consider the following

problem:

min
z
kGf(z) +

kP
2
zTLz. (29)

s.t. k′IDT z = 0

This is the same problem as given in (5), but with the addition of a term proportional to the square of

the constraint (recall DDT = L). Adding the square of the constraint is known as the augmented La-

grangian method, which has been shown to add dampening to the dual optimization problem, improv-

ing convergence, (see (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011) for a discussion and analysis of

the augmented Lagrangian).

Following the same method to develop dynamic update laws as in Section 3, the following dual

optimization problem would be solved:

max
µ

min
z

(
kGf(z) + k′Iz

TDµ+
kP
2
zTLz

)
, (30)

with the resulting dynamics being the same as (26). Thus, adding in a consensus term corresponds to

modifying the problem to solve the augmented Lagrangian, producing the desired dampening effect

without modifying the guarantee of convergence.

5.2 Connections to PI control

As with the previous two distributed optimization techniques, we note the similarity of this distributed

optimization framework with a PI control framework. The Lagrange multiplier, µ, can be expressed

in the same form as done in (18). Thus, the following expression for ż can be obtained:

ż(t) = −kG
∂f

∂z

T

− kIL
∫ t

t0

z(τ)dτ − kPLz(t). (31)

This is the same equation that was derived for a PI control law in Section 2.3. We can therefore expect

to see properties of PI control such as increased overshoot resulting from decreased dampening of the

21

proportional control, zero steady-state error due to the integral term (which has already been proved),

and faster settling time than pure integral control, e.g. (Franklin et al., 2001).

While there exist many distributed optimization techniques, e.g. (Palomar & Eldar, 2010; Wei

& Ozdaglar, 2012; Kvaternik & Pavel, 2012; Wang & Elia, 2010, 2011; Terelius et al., 2011), it is

important to note the similarity of the method in this section to that presented in (Wang & Elia, 2010)

and extended in (Wang & Elia, 2011; Gharesifard & Cortés, 2012). While the development of the

algorithm in (Wang & Elia, 2010) is different than the development in this paper, it can be expressed

as using the augmented Lagrangian to solve the following problem:

min
z
f(z), (32)

s.t. Lz = 0

where the resulting dynamics can be expressed as

ż = −∂f
∂z

T

(z(t))− Lz(t)− Lµ(t), (33)

µ̇ = Lz, (34)

and now µ ∈ RNn as opposed to µ ∈ RMn as before. The only difference between this method and the

method we have developed is simply that the constraint is expressed in terms of the graph Laplacian

instead of the incidence matrix. This would result in an equation similar to (31), except with an L2

term instead of an L term in front of the integral.

While this may seem like a small difference, due to the fact that we have utilized dual-decomposition

in the development of the integral term, we form a PI distributed optimization technique which requires

half of the communication that the technique developed in (Wang & Elia, 2010) requires. This can

be seen from the fact that the incidence matrix, used in dual-decomposition, allows each agent to up-

date the necessary values of µ using only local information. However, using the Laplacian matrix to

express the constraint forms an L2 term which requires that either each agent knows their neighbors’

neighbors states or each neighbor must additionally communicate µi at each optimization step.

5.3 Example

We continue the example in (22) using the newly derived dynamics. In Figure 5, it is apparent that

the PI optimization is able to achieve zero error while converging quickly and with little oscillation.

22

0 5 10 15
0

5

x 1

0 5 10 15
0

5

x 2

0 5 10 15
−5

0
5

Time (sec)

µ
Figure 5: This figure shows the results from the convex optimization example using PI distributed
optimization

Furthermore, Table 1 shows that settling time and overshoot are in between the values of pure propor-

tional and pure integral control, as expected. These attributes will be emphasized in the examples in

the following sections as more complex problems are presented.

6 Scalable multi-agent formulation

Up until this point, we have presented the algorithms in terms of a framework where each agent keeps

its own version of the entire state vector as done in previous works, e.g. (Kvaternik & Pavel, 2012;

Wang & Elia, 2010; Nedic & Ozdaglar, 2009a; Terelius et al., 2011). This is not necessary if some

of the agents’ individual costs do not depend upon all of the elements of the parameter vector being

optimized. An example of this will be shown at the end of the section where each agent introduces

more parameters to be optimized, typical in multi-robot scenarios, e.g. (Keviczky et al., 2006; Droge

& Egerstedt, 2013; Rantzer, 2009; Dunbar & Murray, 2006). However, each agents’ cost depends

solely on the parameters introduced by its neighbors. In such a situation, it is not necessary for each

agent to keep track of the entire parameter vector and, in fact, doing so is not scalable to large numbers

of agents.

In this section, we address this in a similar fashion to (Wang & Elia, 2011) and show that it

fits quite naturally into the framework of the previous sections. First, it is shown that even with the

reduction of parameters the previous theorems still hold. Then, the reduction of parameters will lead

to a slight reformulation of the PI distributed optimization algorithm. Finally, we end this section

with an example where drastic improvement in convergence is achieved by reducing the number of

variables that each agent must maintain.

23

6.1 Eliminating unneeded variables

When each agent does not have an opinion about a parameter in the parameter vector, the problem can

be simplified to eliminate redundancies. Similar to (Wang & Elia, 2011), let Ij = {i|fi depends on

the element j} be the set of agents which depend on element j with cardinality Nj = |Ij |. As agents

no longer needs to keep track of the entire vector, the definition of zj needs to be slightly modified

to zj , vec[xij]i∈Ij ∈ RNi , a subset of the elements originally contained in zj . Now, the aggregate

vector can be defined as z =
[
zT1 ... zTn

]T
∈ RN1+...+Nn .

Let the induced subgraphs, Gi(Vi, Ei), be defined as Vi = {vj ∈ V|j ∈ Ii} ⊆ V and Ei =

{(vi, vj) ∈ E|vi, vj ∈ Vi}. Finally, the following assumption is made to allow for convergence

Assumption 4. Gi is connected ∀i ∈ {1, ..., N}.

Note that, given Assumption 3, Assumption 4 is not limiting. If there exists i s.t. Gi is not

connected, one needs only to extend Gi to contain nodes originally in G that will connect the different

connected components of Gi.

Along this same line of reasoning, we briefly touch upon a topic of study which is out of the scope

of this paper, but worth mentioning. There may be simple cases in which choosing Gi such that it is

connected with the smallest number of vertices possible will not result in the fastest convergence to

the global minimum. There has been much work done on the convergence of the consensus equation

and the network topology plays a key role in determining the convergence rate (Mesbahi & Egerstedt,

2010; Olfati-Saber & Murray, 2004; Jadbabaie et al., 2003). Therefore, to achieve the fastest perfor-

mance, selection of the sub-graph for each variable could be more complicated than simply choosing

the minimally connected sub-graph.

In any case, given Gi, the corresponding incidence matrix, Di ∈ RNi×Mi , where Mi = |Ei|, and

graph Laplacian, Li ∈ RNi×Ni , can be defined. This allows for the definition of the aggregate matrices

D , diag(D1, ..., Dn) and L = diag(L1, ..., Ln). These aggregate matrices will continue to exhibit

the same properties mentioned in Section 2.2 as they can still be expressed as n connected components

of a graph. The only difference is that the connected components do not have the same structure. As

these properties still hold, Theorems 1 through 4 will also hold using the newly defined augmented

matrices and addition of Assumption 4.

24

Figure 6: This figure depicts the “Ring” network structure used in Section 6

6.2 Distributed implementation

While the aggregate dynamics of the multi-agent system can be expressed without any change, the

dynamics executed by each agent will change slightly due to the fact that each variable in the parameter

vector will have a different set of agents that are maintaining a version of it. We express the dynamics

of a single variable as follows:

ẋij = −kG
∂fi
∂xij

− kP
∑

k∈{Ni∩Ij}

(xij − xkj)− k′I
∑

k∈{Ni∩Ij}

µki,j (35)

µ̇ki,j = k′I(xij − xkj). (36)

Note that the algorithms in Sections 3 and 4 can be achieved by setting kP = 0 and k′I = 0 respectively.

Again, we see that each agent is able to execute this algorithm using local information and only

communicating its version of the parameters being optimized with its neighbors.

6.3 Ring example

We now present an example in which scaling down the number of parameters that each agent worries

about drastically improves the performance of the system. Consider the “Ring” network depicted in

Figure 6 where each agent can communicate with agents to each side. In this example, each agent has

a variable that “belongs” to it and it wants to balance having its value be close to its neighbors’ value

as well as a nominal value. This can be expressed in the form of the following quadratic cost:

fi = (xi,i−1 − xii)2 + (xii − xdi)
2 + (xii − xi,i+1)

2 (37)

where xdi = i is the desired value.

25

Note that for the formulation in Sections 3, 4, and 5, each agent would have had to keep track of

N = 20 variables, corresponding to the aggregate state vector having 400 elements. However, this is

greatly reduced by following the formulation in this section. Each agent will only need to keep track

of 3 variables with a total of 60 variables in the aggregate state vector.

The results of both representations of the state can be seen in Figure 7 and Tables 2 and 3. Signif-

icant improvement can be seen across the board in terms of settling time for reducing the number of

variables. Moreover, the overshoot is drastically improved for both the I and PI distributed optimiza-

tion methods. Related to overshoot, it is seen in Figure 7 that the oscillation is drastically reduced for

dual-decomposition.

One final observation about the performance of the PI distributed optimization technique is note-

worthy. This example demonstrates the performance of the system when a larger number of variables

is in question. We see in Table 2 that the PI distributed optimization significantly outperforms the

other methods in terms of convergence. Moreover, there is a drastic improvement over the dual-

decomposition method in terms of overshoot and oscillation as well as an improvement over the con-

sensus method in terms of steady-state error.

Again, we emphasize that this is an extreme example meant to demonstrate the possible utility of

reducing the number of variables that each agent deals with. Conclusions should not be drawn beyond

the notion that this may be beneficial as there may be instances in which scaling back as much as

possible would not be beneficial.

7 Conclusion

We have developed a new, PI distributed optimization method through the combination of dual de-

composition and the consensus method for distributed optimization. This has been done by noting

the similarity of the methods when considering the underlying constrained optimization problem.

This new method is able to achieve desirable properties from both of the previous methods. Namely,

faster convergence and dampening due to the proportional term, originating from the consensus based

method, and zero steady-state error from the integral term, originating from dual-decomposition. The

method was also modified to allow agents to maintain only the variables they care about, with an

example showing drastic improvement in convergence times.

26

0 20 40
0

5

10

Time (sec)
0 20 40

0

5

10

Time (sec)
0 20 40

0

5

10

Time (sec)

0 5 10 15
0

5

10

Time (sec)
0 5 10 15

0

5

10

Time (sec)
0 5 10 15

0

5

10

Time (sec)

Figure 7: This figures shows the results of applying the formulation of Sections 3, 4, and 5 on the top
row and 6 bottom row to solve the problem in (37). The left, middle, and right images of each row
correspond to consensus, dual-decomposition, and PI distributed optimization techniques. The results
shown are for variable 10. The solutions in the top row require 20 versions of this variable to converge
to the optimal value where the solutions in the bottom row require only 3.

Funding

The work by M. Egerstedt was funded by The Air Force Office of Scientific Research through grant number

[2012-00305-01]

References

Arrow, K., Hurwicz, L., & Uzawa, H. (1958). Studies in nonlinear programming. Stanford University
Press, Stanford, CA.

Boyd, S. (2004). Convex optimization. Cambridge: Cambridge University Press.
Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1), 1–122.

Droge, G., & Egerstedt, M. (2013). Distributed parameterized model predictive control of networked
multi-agent systems. American Control Conference.

Dunbar, W., & Murray, R. (2006). Distributed receding horizon control for multi-vehicle formation
stabilization. Automatica, 42(4), 549–558.

Feijer, D., & Paganini, F. (2010). Stability of primal-dual gradient dynamics and applications to
network optimization. Automatica, 46(12), 1974–1981.

Franklin, G., Powell, J., & Emami-Naeini, A. (2001). Feedback control of dynamic systems. Prentice
Hall.

Gharesifard, B., & Cortés, J. (2012). Continuous-time distributed convex optimization on weight-
balanced digraphs. In Ieee 51st annual conference on decision and control (cdc) (pp. 7451–
7456).

27

Giselsson, P., & Rantzer, A. (2010). Distributed model predictive control with suboptimality and
stability guarantees. In 49th ieee conference on decision and control (pp. 7272–7277).

Jadbabaie, A., Lin, J., & Morse, A. (2003). Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.

Keviczky, T., Borrelli, F., & Balas, G. (2006). Decentralized receding horizon control for large scale
dynamically decoupled systems. Automatica, 42(12), 2105–2115.

Kvaternik, K., & Pavel, L. (2011). Lyapunov analysis of a distributed optimization scheme. In 5th
international conference on network games, control and optimization (netgcoop).

Kvaternik, K., & Pavel, L. (2012). A continuous-time decentralized optimization scheme with posi-
tivity constraints. In Ieee conference on decision and control.

Lobel, I., & Ozdaglar, A. (2008). Distributed subgradient methods over random networks. In
Proceedings of allerton conference on communication, control, computation.

Luenberger, D., & Ye, Y. (2008). Linear and nonlinear programming (3rd ed.) (Vol. 116). Springer.
Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Princeton

Univerisity Press.
Nedic, A., & Ozdaglar, A. (2009a). Distributed subgradient methods for multi-agent optimization.

IEEE Transactions on Automatic Control, 54(1), 48–61.
Nedic, A., & Ozdaglar, A. (2009b). Subgradient methods for saddle-point problems. Journal of

optimization theory and applications, 142(1), 205–228.
Olfati-Saber, R. (2007). Distributed kalman filtering for sensor networks. In 46th ieee conference on

decision and control.
Olfati-Saber, R., & Murray, R. (2004). Consensus problems in networks of agents with switching

topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.
Palomar, D., & Eldar, Y. (2010). Convex optimization in signal processing and communications.

Cambridge University Press.
Rantzer, A. (2007). On prize mechanisms in linear quadratic team theory. In 46th ieee conference on

decision and control (pp. 1112–1116).
Rantzer, A. (2009). Dynamic dual decomposition for distributed control. In American control

conference (pp. 884–888).
Shamma, J. (2007). Cooperative control of distributed multi-agent systems. Wiley Online Library.
Sundhar Ram, S., Nedić, A., & Veeravalli, V. (2010). Distributed stochastic subgradient projection

algorithms for convex optimization. Journal of optimization theory and applications, 147(3),
516–545.

Terelius, H., Topcu, U., & Murray, R. (2011). Decentralized multi-agent optimization via dual de-
composition. In Kth, automatic control. IFAC.

Wang, J., & Elia, N. (2010). Control approach to distributed optimization. In 48th annual allerton
conference on communication, control, and computing (allerton) (pp. 557–561).

Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization.
In 50th ieee conference on decision and control and european control conference (cdc-ecc).

Wei, E., & Ozdaglar, A. (2012). Distributed alternating direction method of multipliers. In Ieee
conference on decision and control.

28

Table 1: The results of performing proportional, integral, and PI distributed optimization for the con-
vex optimization problem

P: γ = 1 P: γ = 1
1+.1t I PI

M 0.11% 34.66% 24.24% 14.95%
t10 3.54 103.73 5.61 5.14
t1 6.66 869.32 15.04 13.19

% error 43.58% 1.97% 0% 0%

29

Table 2: The results of performing proportional, integral, and PI distributed optimization with each
agent optimizing over the full state vector

P: γ = 1 P: γ = 1
1+.1t I PI

M 0.1% 0.12% 37.5% 7.9%
t10 120.8 659.42 115.28 29.78
t1 226.58 4884.8 542.71 83.02

% error 55.4% 0.92% 0% 0%

30

Table 3: The results of performing proportional, integral, and PI distributed optimization with each
agent optimizing over a subset of the state vector

P: γ = 1 P: γ = 1
1+.1t I PI

M 0.1% 35.15% 7.12% 4.51%
t10 5.2 82.85 6.12 6.03
t1 9.47 692.57 12.78 12.33

% error 57.48% 5.3% 0% 0%

31

List of Figures

1 This figure shows the results of using the cost f(z) = (x1 − 1)2 + (x2 + 1)2. Left: Dotted line
shows the equality constraint and the arrows show the gradient and projected gradient. Right:
Result of performing the PI gradient method for optimization given in (8). The trajectory of the
two states is shown ending in the final condition denoted by the solid circle and the constraint is
shown as a dotted line. The arrows show the final gradient and Lagrange multiplier multiplied
by the constraint. As expected, these are equal in magnitude, but opposite in direction. 8

2 This figure depicts the “Line” network structure used for the examples in Sections 3, 4, and 5 . 16
3 This figure shows the results from the convex optimization example using dual-decomposition . 16
4 This figure shows the result of optimizing using consensus for the problem given in (22) for

both a constant and fading value for kG on the left and right respectively 19
5 This figure shows the results from the convex optimization example using PI distributed opti-

mization . 23
6 This figure depicts the “Ring” network structure used in Section 6 25
7 This figures shows the results of applying the formulation of Sections 3, 4, and 5 on the top

row and 6 bottom row to solve the problem in (37). The left, middle, and right images of each
row correspond to consensus, dual-decomposition, and PI distributed optimization techniques.
The results shown are for variable 10. The solutions in the top row require 20 versions of this
variable to converge to the optimal value where the solutions in the bottom row require only 3. . 27

32

Notes on contributors

Greg Droge received the B.S. degree in Electrical Engineering from Brigham Young Uni-
versity, Provo, Utah. He received his M.S. and Ph.D. from the school of Electrical and
Computer Engineering at the Georgia Institute of Technology in 2012 and 2014, respec-
tively. His research interests include model predictive control and distributed optimization
with emphasis in motion planning and control.

Hiroaki Kawashima received his M.S. and Ph.D. in informatics from Kyoto University,
Japan in 2001 and 2007, respectively. He is currently a senior lecturer at the Graduate
School of Informatics, Kyoto University, Japan. From 2010 to 2012, he was a JSPS Post-
doctoral Fellow for Research Abroad, and a visiting researcher at the School of Electrical
and Computer Engineering, Georgia Institute of Technology. His research interests in-
clude hybrid systems, networked control systems, pattern recognition, machine learning,
and human-computer interaction. He is a member of the IEEE.

Magnus B. Egerstedt (S’99-M’00-SM’05-F’12) is a Professor in the School of Electri-
cal and Computer Engineering at the Georgia Institute of Technology. He received the
M.S. degree in Engineering Physics and the Ph.D. degree in Applied Mathematics from
the Royal Institute of Technology, Stockholm, Sweden, in 1996 and 2000 respectively, and
he received the B.A. degree in Philosophy from Stockholm University in 1996. Dr. Egerst-
edt’s research interests include hybrid and networked control, with applications in motion
planning, control, and coordination of mobile robots, and he is the director of the Georgia

Robotics and Intelligent Systems Laboratory (GRITS Lab), is a Fellow of the IEEE, and received the CAREER
Award from the U.S. National Science Foundation in 2003.

33

