
Distributed Mode Scheduling for  
Coordinated Power Balancing 

Hiroaki Kawashima (Kyoto University) 

Takekazu Kato (Kyoto University) 

Takashi Matsuyama (Kyoto University) 

SmartGridComm2013 
 ARCH1, Oct. 22nd 
 



Motivation 

• Volatile power supply & demand in future 
– More operating reserves (power plants)?  increase electricity price 

– How can we coordinate end users to balance/flatten the total power? 
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End Users (household, office, etc.) 

• End user:  a unit of decision making for energy management 
– Household, office, factory, etc. 

• Assume that Energy Management System (EMS) is installed 
– Smart meter, communication device, sensor (controller) of appliances 

• Prosumer: Producer + Consumer 

Eco house in Kyoto  
(From http://www.kyo-ecohouse.jp)) 
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End Users’ Consumptions 

• Examples of consumption patterns of several families 

– Apartment (1 bed room ) with EMS [Kato, et al. SmartGridComm11,12] 

– Affected by not only life styles but events (travel, party, etc.) 

 

 

 

 

 

 

End users have their own daily preference 
and often difficult to predict from utilities 
 



Coordination of End Users in a Community 

• Demand Response • Coordination as a community 
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Community-based Coordination for Flattening 

• Distributed architecture 
– User has own controller (autonomous agent) 

• Users negotiate their plans via coordinator 
1. Day-ahead coordination 
2. Online coordination 
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Coordination of Households (End Users) 

• Flatten the peak power while preserving each household’s satisfaction: 
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 minimize over 𝑥𝑖  (𝑖 = 1, … ,𝑁) 
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 𝑥𝑖𝑖 ：Total demand of all the households 

 
 Objective of household 𝑖𝑖  
     +Objective of the community 
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Q1 ： How should the households and coordinator 
interact with each other? 
Without disclosing internal information (objective functions) 

Dissatisfaction/difficulty of 
using power profile 𝑥𝑖 

Penalty function for 
peak 



Coordinator 

Idea 1: Profile-based Distributed Coordination 

• Flatten the peak power while preserving each household’s satisfaction： 

  minimize
𝑥1,…,𝑥𝑁

    𝑓𝑖 𝑥𝑖𝑖   +   𝑔( 𝑥𝑖𝑖 ) 

 

• Coordination of distributed controllers (autonomous agents) 
– Each user does not disclose their objective functions 𝑓𝑖  
   Can avoid privacy issues / integrate different types of EMS (allow heterogeneity) 

Penalty function for peak 
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Alternating Direction Method of Multipliers (ADMM): 

Distributed Optimization via ADMM 

Coordinator 
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Control in a Household 

• Change of device usage: time-shift, reduction 

• We focus on time-shift (scheduling) of appliance usage in a 
household as it has a large effect in power flattening 
– (Ex.) EV charging, A/C, dryer, dish washer, rice cooker 
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Q2.  How to model normal patterns/acceptable range 
of each household? 



Idea 2: Objective Function of Households 

• Objective function 𝑓𝑖 𝑥𝑖   

– Difficulty/dissatisfaction of realizing profile 𝑥𝑖  by household 𝑖 
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Probabilistic Model of Time Series 

• Hidden Semi-Markov Model 
– Assume that each device has its “internal modes” (discrete states) 

– Power consumption is determined by the control of modes 

– All the model parameters can be learned from daily usage data 
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(Ex.) Standby Charging After charging Standby Charging 

Replace user-side optimization over 𝑥𝑖  by ”mode scheduling” 
Take into account temporal constraints (duration, order) on power levels 

𝑓 𝑥𝑖 ≜ − log max
𝑠𝑖,1,…,𝑠𝑖,𝑇

𝑃(𝑠𝑖,1, … , 𝑠𝑖,𝑇 , 𝑥𝑖) 



Distributed Mode Scheduling 

• Flatten the peak power while preserving each household’s satisfaction 

  minimize
𝑥1,…,𝑥𝑁

 𝑓𝑖 𝑥𝑖𝑖 + 𝑔( 𝑥𝑖𝑖 ) 

 

• Household need to send only their profiles 
– The coordinator do not need to know each objective function 
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Simulation (Day-ahead Scheduling) 

• PHEV charging  
– 1kW x 3hours in a day 
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• Two groups with different flexibility (given manually) 

– Group 1 (20 households) 

• Large flexibility of changing the start time 

– Group 2 (20 households) 

• Small flexibility 

• Result 

– Almost converge with in 20 iterations 

– Realize group objective (peak shaving) while 
 taking into account users’ flexibility 
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Conclusion: Distributed Mode Scheduling 

• Coordination of user-side controllers (autonomous agents)  
 Profile-based negotiation (ex. different types of EMS can be integrated) 
 Negotiation is done by the coordinator’s broadcast signal (simple) 
 

• Hidden-semi Markov model for users’ objective functions 
 Model can be learned from daily consumption patterns 
 User-side optimization becomes “mode scheduling” and solved efficiently 
 

• Future work 
– Economic design of objective functions 

– Generators and batteries (charging/discharging) 

– Online negotiation (Users do not always follow the schedule) 


