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Motivation

e Volatile power supply & demand in future
— More operating reserves (power plants)? = increase electricity price
— How can we coordinate end users to balance/flatten the total power?

Total supply = Total demand
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End Users (household, office, etc.)

e End user: a unit of decision making for energy management
— Household, office, factory, etc.

e Assume that Energy Management System (EMS) is installed
— Smart meter, communication device, sensor (controller) of appliances

e Prosumer: Producer + Consumer
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End Users’ Consumptions

 Examples of consumption patterns of several families
— Apartment (1 bed room ) with EMS [Kato, et al. SmartGridComm11,12]
— Affected by not only life styles but events (travel, party, etc.)
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Coordination of End Users in a Community

e Demand Response
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Community-based Coordination for Flattening

° Distributed architecture Delzta=20,3(I)°/oFIexibIcI3Househo.:|ds
— User has own controller (autonomous agent) |

e Users negotiate their plans via coordinator
1. | Day-ahead coordination
2.  Online coordination
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Coordination of Households (End Users)

e Flatten the peak power while preserving each household’s satisfaction:
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ldea 1: Profile-based Distributed Coordination

e Flatten the peak power while preserving each household’s satisfaction:

minimize ),|f;(x;) |+ |9(; x;)

X1, XN

Difficulty/dissatisfaction of using x; Penalty function for peak

e Coordination of distributed controllers (autonomous agents)
— Each user does not disclose their objective functions f;
© Can avoid privacy issues / integrate different types of EMS (allow heterogeneity)

Profile-based negotiation to find best plan x;(i = 1, ..., N)
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Distributed Optimization via ADMM

Coordinator’s version of (expectation for)
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Alternating Direction Method of Multipliers (ADMM):
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Control in a Household

e Change of device usage: time-shift, reduction

e We focus on time-shift (scheduling) of appliance usage in a
household as it has a large effect in power flattening

— (Ex.) EV charging, A/C, dryer, dish washer, rice cooker
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ldea 2: Objective Function of Households

e Objective function f;(x;)

— Difficulty/dissatisfaction of realizing profile x; by household i

|
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Many profiles are infeasible, i.e., f;(x;)=00
Can we learn the function f;(x;) from data?

We can use a probabilistic model of time Smart tap
series used in speech/gesture recognition (smart plug)



Probabilistic Model of Time Series

e Hidden Semi-Markov Model

— Assume that each device has its “internal modes” (discrete states)
— Power consumption is determined by the control of modes
— All the model parameters can be learned from daily usage data

(Ex.) Standby Charging Standby Charging After charging
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Replace user-side optimization over x; by "mode scheduling”
Take into account temporal constraints (duration, order) on power levels




Distributed Mode Scheduling

e Flatten the peak power while preserving each household’s satisfaction
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e Household need to send only their profiles
— The coordinator do not need to know each objective function
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Simulation (Day-ahead Scheduling)

e PHEV charging Group 1 Group 2

— 1kW x 3hours in a day a A A
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e Two groups with different flexibility (given manually)

— Group 1 (20 households)
e Large flexibility of changing the start time

— Group 2 (20 households) 0 | | |
e small flexibility 2 0| — -

e Result

— Almost converge with in 20 iterations

— Realize group objective (peak shaving) while ° ° 10 1.5 20
taking into account users’ flexibility k (# of Iteration)



Conclusion: Distributed Mode Scheduling

e Coordination of user-side controllers (autonomous agents)

© Profile-based negotiation (ex. different types of EMS can be integrated)
© Negotiation is done by the coordinator’s broadcast signal (simple)

e Hidden-semi Markov model for users’ objective functions
© Model can be learned from daily consumption patterns
© User-side optimization becomes “mode scheduling” and solved efficiently

e Future work
— Economic design of objective functions
— Generators and batteries (charging/discharging)
— Online negotiation (Users do not always follow the schedule)



