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Abstract— This paper applies a general computational tech-
nique for optimal control of switched-mode hybrid systems, re-
cently developed by the authors, to voltage-regulation problems
in a step-down DC-DC converter. Unlike existing techniques
that are based on model-predictive control and a specific
algebraic structure of the problem, the algorithms presented
here are based on gradient descent with Armijo step size, and
consequently can incorporate time-dependent state constraints
in a natural way. The approach proposed in this paper is
complementary to the extant MPC-based techniques, and it
appears to compare favorably with some of the established
works. Two problems are being addressed: one concerns pulse-
width modulation and computes the optimal duty ratio, and
the other computes an optimal switching schedule without a
fixed cycle time.

I. INTRODUCTION

The problem of hybrid optimal control has been the
focus of extensive research in the past decade. One of the
major application areas motivating this problem is in power
electronics, and more specifically in switching circuits, where
it is desirable to regulate or control a state variable, such
as current or voltage, by a switching schedule. In a typical
problem the objective of the switching control is to minimize
the deviation of a state variable from a given reference value
while satisfying pointwise inequality constraints on other
state variables. The purpose of this paper is to provide a test
case of a general algorithmic approach, recently developed
by the authors, for voltage regulation in a DC-DC buck
converter. Two problems will be considered: in the first, the
schedule will be defined via the duty ratios of the switch
for a given switching frequency, and in the second, an
optimal, acyclic schedule will be computed without imposing
a switching frequency. A particular feature of our approach
is that it incorporates state constraints over a continuum of
time-points in a natural way.

Such switching control problems have been extensively
considered by Morari et al.; see [9], [1], [2] and references
therein. Their approach is based on model predictive control
over a finite horizon, and piecewise-affine interpolations of
measurements taken at sample data points. The optimal
switching times are computed by mixed integer linear or
quadratic programming. An alternative algorithmic approach
has been developed by DeCarlo et al. in [5], [11], [12]
(also see references therein). It is based on relaxations of
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the optimal mode-scheduling problem, solving the relaxed
problem by nonlinear model-predictive control techniques,
and computing the real-time switching control laws.

The method proposed in this paper is based on gradient-
descent techniques rather than on linear functional approx-
imations, and it computes directly in the space of mode-
schedules without resorting to relaxations. It has been devel-
oped in a general setting of nonlinear, autonomous, optimal
mode-switching problems [16], and tested on a simple aca-
demic example. In this paper we tailor it to specific problems
arising in optimal voltage regulation in a DC-DC converter
and demonstrate its computational efficacy. In particular,
we will point out its handling of state-variable constraints
without having to resort to sampling, thereby avoiding the
potential problem of state ripples and associated constraint
violations, which may arise in sample-based techniques. We
will do some comparisons with a particular existing method,
namely [2] since it served to motivate the results described in
this paper, but we point out that broad comparisons with the
existing methods is premature at this time since our technique
is still in its infancy. Our objective is but to introduce a new
player to the field of optimal switching control.

The starting point of our investigation is Reference [2],
where a Pulse-Width Modulation (PWM) problem in a DC-
DC converter is considered. We solve the same problem and
get a fast convergence of our algorithm. There is insufficient
data for a detailed comparison of the two techniques, but both
converge fast. However, it is noted that the algorithm in [2]
does not always guarantee that pointwise state constraints
are satisfied, and this may be due to the facts that it is
based on sampling and a particular algebraic structure. In
contrast, the algorithm described here addresses a continuum
of constraints by integrating a penalty function within the
structure of the cost function in a way that appears to limit
the magnitude of state ripples, thereby avoiding constraint
violations, while having little impact on the algorithm’s
computational workload.

The second problem we consider is to compute an optimal
switching schedule that is not confined to the structure of
PWM with fixed switching frequency. Instead, the switching
schedule can be fairly general and independent of a particular
control structure. This problem is more difficult than the
PWM problem since its controlled variable consists not only
of the switching times but also of the instantaneous switching
rates, and hence, as we shall see, it has discrete as well as
continuous components. The algorithm that we use has been
developed for such problems, and its demonstrated efficacy
suggests its eventual use in other application areas. We are
cognizant of the fact that optimal switching-control problems



in power electronics often are stated in the setting of PWM,
but we believe that the more-general setting may become
increasingly suitable to future applications involving leakage
energy associated with switching. Energy-related costs are
not being considered in this paper but will be addressed in
a forthcoming publication.

Section II presents our optimization techniques in an ab-
stract setting, while Section III applies them to the particular
problems of controlling the switching schedules in DC-
DC converters. Finally, Section IV concludes the paper and
suggests directions for future research.

II. OPTIMIZATION OF MODE-SCHEDULES IN
SWITCHED-MODE SYSTEMS

In this section, we briefly review the optimal mode-
scheduling algorithms that will be used in the sequel. A
general autonomous switched-mode dynamical system can
be described by the following equation,

ẋ(t) = f(x(t), v(t)), (1)

where x ∈ R
n is the state variable, and the control v(t) is

confined to a finite set V . Suppose that the system evolves in
a finite horizon [0, T ] for a given T > 0, and that the control
function v(t) has its values changed a finite number of times.
We assume that the function f(·, v) is twice-continuously
differentiable for every v ∈ V . The initial state x0 = x(0)
is assumed to be given and fixed.

Given a continuously-differentiable function L : Rn → R,
consider the problem of minimizing the cost functional J ,
defined via

J :=

∫ T

0

L(x(t))dt, (2)

with respect to the control v(t), t ∈ [0, T ]. Given a control
function v(t), t ∈ [0, T ], let v1, ..., vN+1 ∈ V denote the
successive control values v(t) in [0, T ], and let τi denote
the switching time between vi and vi+1, where 0 ≤ τ1 ≤
... ≤ τN ≤ T . We denote the switching times by the vector
notation τ̄ := (τ1, ..., τN )� ∈ R

N ; we further define τ0 := 0
and τN+1 := T . Using this notation, we rewrite the system
equation (1) as

ẋ(t) = fi(x(t)) ∀t ∈ [τi−1, τi), i = 1, ..., N + 1, (3)

where fi(x(t)) := f(x, vi).
The successive values of v ∈ V , namely v1, . . . , vN+1,

represent the various modes of the system, and hence the
problem of minimizing J subject to (3) can be viewed
as an optimal mode-switching problem. We discern two
kinds of problems: a timing optimization problem, and a
scheduling optimization problem. The timing-optimization
problem arises when the sequence of modes {v1, . . . , vN+1}
is given, and it is desirable to compute the switching times
between them, namely the vector τ̄ ∈ R

N . In the scheduling
optimization problem, the controlled variable consists of
the mode sequence {v1, . . . , vN+1} including the number
of modes, N + 1, as well as the switching-time vector τ̄ .
Obviously the timing optimization problem is much easier

than the scheduling optimization problem, since the former is
a nonlinear programming problem with a continuous variable
τ̄ , whereas the latter is a mixed-integer problem involving
the sequence of modes. The next two subsections describe
algorithms for solving these problems, recently developed by
the authors.

A. Algorithm for the Timing Problem

Given a mode-sequence, the problem is to minimize J ,
defined in (2), as a function of τ̄ := (τ1, . . . , τN )� subject to
the constraints that 0 ≤ τ1 . . . ≤ τN ≤ T . We use a steepest-
descent algorithm with Armijo step sizes, modified to project
the gradient onto the feasible set to account for the inequality
constraints 0 ≤ τ1 ≤ . . . ≤ τN ≤ T . The partial derivatives
∂J
∂τi

are computed as follows. Denote by F (x, t) the Right-
Hand Side (RHS) of (3), so that ẋ = F (x, t). Define the
costate variable p(t) ∈ R

n by the following equation,

ṗ(t) = −
(
∂F

∂x
(x, t)

)�
p(t)−

(
∂L

∂x
(x)

)�
(4)

with the boundary condition p(T ) = 0. Then (see [8]), for
all i = 1, . . . , N ,

∂J

∂τi
(τ̄) = p(τi)

�(fi(x(τi))− fi+1(x(τi))). (5)

The steepest-descent algorithm with Armijo step size has the
following form.

Algorithm 1: Given: Constant parameters α ∈ (0, 1) and
β ∈ (0, 1).
Step 0: Choose an initial feasible point τ̄0. Set k = 0.
Step 1: Compute hk := ∇J(τ̄k) using (5). If ||hk|| = 0,
then exit; otherwise, continue.
Step 2: Compute j(τ̄k) defined by j(τ̄k) =
min

{
j = 0, 1, ... : J(τ̄k − βjhk)− J(τ̄k) ≤ −αβj ||hk||2

}
,

and set γ(τ̄k) := βj(τ̄k).
Step 3: Set τ̄k+1 := τ̄k − γ(τ̄k)hk, set k = k + 1, and go to
Step 1.

As mentioned earlier, compliance with the inequality con-
straints requires a modification of Algorithm 1 by projecting
−∇J(τ̄k) onto the feasible set and possibly truncating hk to
ensure feasibility. For details, please see [3].

This algorithm is globally convergent and tends to yield
large step sizes when far off a minimum; see [13] for
extensive discussions including theory and applications.

B. Algorithm for the Scheduling Problem

Let Σ denote the space of mode-sequences corresponding
to control functions v : [0, T ] → V having a finite (but
not necessarily bounded) number of switching points. The
problem considered here is to minimize J , defined by (2),
as a function of the mode-schedules σ ∈ Σ. The space
Σ is infinite dimensional and incomplete, and this renders
challenging the task of developing provably-convergent op-
timization algorithms.

A number of algorithms for this general scheduling prob-
lem have emerged, including geometric techniques [6], [14],
[15], relaxation methods [5], [7], and steepest-descent algo-
rithms [4], [10]. The latter algorithms insert a single mode to



a given schedule and solve the resulting timing optimization
problem. Recently, a new descent-based technique has been
proposed, which iterates directly in the schedule space and
avoids the need for solving timing optimization problems
[16]. It can swap any number of modes on large time-sets at
a given iteration, and it uses the Armijo step size to compute
the Lebesgue measure of the time-set where modes are to be
changed. It appears to yield large descents from schedules
that are far-off from optimum points, and hence we expect
it to converge fast towards a minimum. It is this algorithm
that we try in this paper on the switching-circuit regulation
problem.

To present the details of this algorithm, let us define the
concept of the insertion gradient as follows [4]. Given a
mode-schedule σ ∈ Σ, a time s ∈ [0, T ), and a point w ∈
V , consider inserting the mode associated with w to σ at
time s for a duration of λ > 0 seconds, and consider the
resulting cost functional, J , defined by (2), as a function of
λ > 0. The insertion gradient of w at (σ, s), denoted by
Dσ,s,w, is defined as Dσ,s,w = dJ

dλ+ (0). We recognize in this
a needle variation, and consequently we have the following
expression,

Dσ,s,w :=
dJ

dλ+
(0) = p(s)�(f(x(s), w)− f(x(s), v(s))),

(6)
where the costate p is defined by (4). Now a word must be
said about w in Equation (6). If w = v(s) then Dσ,s,w = 0
since no change is made to the schedule. On the other hand,
if w �= v(s) then Dσ,s,w may be negative, positive, or 0. If
Dσ,s,w < 0 then inserting to σ the mode associated with w
for a brief amount of time starting at s would result in a
decrease in J . We seek such an insertion yielding a descent
as large as possible, and therefore we define, for a given
σ ∈ Σ,

Dσ = min
s∈[0,T ]

min
w∈V

(Dσ,s,w).

Then the necessary optimality condition equivalent to sta-
tionarity is that Dσ = 0.

To simplify the presentation of the algorithm, suppose that
there are only two modes, namely the set V contains two
elements. Thus, a mode-insertion to a given schedule means
that, at the insertion time s ∈ [0, T ], the current mode is
flipped, i.e., replaced by its complementary mode. The main
idea behind the algorithm is to flip the modes at times in
a set which is as large as possible in order to guarantee
a large descent in J . This set is computed via an Armijo
procedure, and it may be disconnected. The set of points
s ∈ [0, T ] where Dσ,s < 0 is unsuitable for this purpose, so
we search for a subset thereof where Dσ,s is “more negative”.
Fix η > 0, and define Sσ,η := {s ∈ [0, T ] : Dσ,s ≤ ηDσ}.
The algorithm looks for a subset of Sσ,η in the following
way. Let μ(set) denote the Lebesgue measure of the set set,
and let S : [0, μ(Sσ,η)] → 2Sσ,η be a mapping such that,
∀λ ∈ [0, μ(Sσ,η)], S(λ) is the finite union of intervals, and
μ(S(λ)) = λ. Such a mapping is not unique, but a good
choice for it is to have S(λ) be the leftmost subset of Sσ,η ,
S, such that μ(S) = λ. Furthermore, define σ(λ) to be the

schedule obtained from σ by flipping the mode at every time-
point s ∈ S(λ). The algorithm has the following form (see
[16]).

Algorithm 2: Given: Constant parameters η ∈ (0, 1), α ∈
(0, η), and β ∈ (0, 1).
Step 0: Choose an initial schedule σ0 ∈ Σ. Set k = 0.
Step 1: Compute Dσk

. If Dσk
= 0, then exit; otherwise,

continue.
Step 2: Compute Sσ,η .
Step 3: For λj := βjμ(Sσ,η), compute j(σk) defined by

j(σk) = min
{
j = 0, 1, ... : J(σk(λ

j))− J(σk) ≤ αλjDσk

}
.

Define λk := λj(σk).
Step 4: Set σk+1 := σk(λk), set k = k + 1, and go to Step
1.

This algorithm is suitable for unconstrained problems,
and a modification of it to the case involving continuum of
constraints will be described in the next section.

C. Penalty Function for State Inequality Constraints

Consider the problem of minimizing J as defined by
Equations (1) and (2) (either the timing optimization prob-
lem or the scheduling optimization problem) subject to the
additional requirement of satisfying a continuum of state
constraints. These constraints are expressed via inequalities
of the form G(x(t)) ≤ 0 for every t ∈ [0, T ], where
G : R

n → R is a continuously-differentiable function.
The idea we pursue is to use a penalty function, and what
comes to mind is an application of a scaled ramp function
on G(x(t)). Thus, denoting the ramp function by R(z) for
z ∈ R, namely R(z) = z for z ≥ 0 while R(z) = 0 for
z < 0, the penalty term is cR(G(x(t))) ∀t ∈ [0, T ] for a
suitably-large c > 0. Furthermore, we can integrate these
terms over t ∈ [0, T ] together with the cost function L(x(t))
in order to avoid having to handle a continuum of penalty
terms, and the result is a minimization of the function∫ T

0

(
L(x(t)) + cR(

G(x(t))
))

dt (7)

over the switching times τ̄ or the schedules σ ∈ Σ, depending
on whether the timing optimization problem or the schedul-
ing optimization problem is under consideration. Since x(t),
G(x), and R(z) are continuous, this ensures that ∀ε > 0, the
Lebesgue measure of the subset of [0, T ] where G(x(t)) > ε
converges to 0 as c → ∞.

The term in (7) almost fits the framework defined by Equa-
tions (1) and (2), except for the fact that the function L(x)
in (2) is assumed to be continuously differentiable while the
function R(

G(x)
)

is not differentiable. Consequently, we
approximate the ramp function R(z) by the parameterized
set of functions Ra(z), a > 0, defined by

Ra(z) =
1

a
ln(eaz + 1). (8)

Ra(z) is the integral of the sigmoid function ra(z) :=
1

1+e−az which is known to approximate the step function, and
hence Ra(z) approximate R(z) as a → ∞ in the following
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Fig. 1. Synchronous step-down DC-DC converter.

sense: For every z ∈ R, lima→∞ Ra(z) = R(z).1 Ra(z)
is continuously differentiable in z, and hence we use it to
replace R(z) in minimizing the term in (7). Both parameters
c > 0 and a > 0 can be fixed at large values or increased
dynamically, but in any case, for given values of them, we
minimize the function Ja,c, defined via

Ja,c =

∫ T

0

(
L(x(t)) + cRa

(
G(x(t))

))
dt (9)

in terms of the relevant timing or scheduling parameters.

III. OPTIMAL SWITCHING-CONTROL OF A DC-DC
CONVERTER

This section considers the same circuit, with the same
parameter values, that was analyzed in [2]. We first solve the
same optimal mode-switching problem that was considered
in [2], and then we formulate and solve a mode-scheduling
optimization problem.

The circuit shown in Figure 1 depicts a two-port DC-
DC power converter, consisting of an ideal switch and a
non-ideal LC filter, an ideal voltage source to supply the
power that flows into the input port, and an ideal current
source that absorbs the power that flows from the output
port. Application of physical laws yields the dynamic model

d

dt

[
vc
i�

]
=

[
0 1

C− 1
L − rc+r�

L

] [
vc
i�

]

+

[− 1
C

rc
L

]
io +

[
0
1
L

]
vsv, v ∈ {0, 1} (10)

where vc is the voltage across the ideal capacitance C, i�
is the current through the ideal inductance L, rc and r�
represent the parasitic resistances in series with the ideal
energy storage elements, vs is the possibly time-varying
voltage across the input source, io is the possibly time-
varying current through the output load, and v is the control
signal that determines the state of the switch.2

Following [2] we set the following values to the various
circuit elements: C = 70/2π farad, L = 3/2π henry, rc =
0.005 ohm, and r� = 0.05 ohm. The rationale behind these
values, given in [2], is they represent a scaled system of
units.

1The sigmoid function, also called the logistic function, is used in
pattern classification and other application areas requiring the mapping of
continuous data into a binary set.

2Note the use of the nonstandard notation v for the control signal. We
do this in order to comply with an emerging notation in the literature on
switched-mode optimization, where v denotes the switching input signal
while u denotes a continuous input control.

Observe that the numerical values of v(t) in Equation (10)
reflect on the position of the switch: If v(t) = 1 then the last
term on the RHS of (10) is present, which corresponds to the
state equation when the switch is in the H position. On the
other hand, if v(t) = 0 then the last term in (10) is absent,
corresponding to the state equation when the switch is in the
L position.

The forthcoming optimization problems will be cast in the
setting of receding horizons over brief intervals. We assume
that vc(t) and io(t) are measured at the start of each horizon
interval and their obtained values are maintained throughout
the interval, and therefore Equation (10) falls within the
framework defined by (1).

A. Switching Time Optimization for PWM Systems

Consider a cyclical switching policy with a fixed switching
period (cycle time) of Ts seconds. Since Ts is a constant, we
count time in terms of numbers of cycles. Suppose that at
each cycle the switch starts at the H state and then transitions
to the L state; see Figure 1. Let the kth cycle consist of the
time-interval [k, k + 1), k = 1, 2, . . ., and let dk denote the
duty ratio of that cycle. Then, the switch is in the H state
during the interval [k, k+dk), and it is in the L state during
the rest of the cycle, namely in the interval [k + dk, k + 1).

In the problem considered here (and in [2]) it is desirable
to regulate the capacitor voltage vc(t) to a given reference
value vc,ref by the duty ratios, while constraining the in-
ductor current i�(t) to below a given threshold value, i�,max

at all time t. In the context of PWM we define a receding
horizon of M cycles for a given M ≥ 1, and consider the
following optimal control problem at the starting time of
each cycle, k: Measure the input voltage vs and io at time
k, namely vs(k) and io(k); define v(t) for all t ∈ [k, k+M)
as follows: for every m = 0, . . . ,M − 1,

v(t) =

{
1, t ∈ [k +m, k +m+ dk+m)
0, t ∈ [k +m+ dk+m, k +m+ 1);

(11)

and for the system associated with the start of the kth cycle,
we set vs(t) = vs(k) and io(t) = io(k) ∀t ∈ [k, k + M),
i.e., we consider the sources to have the constant value that
is measured at time k. The state equation for this system
is given by (10) with the above piecewise-constant values
of vs and io, and the initial condition for (10) is x(k) =
(vc(k), i�(k))

�, whose components are also measured at
time k.3 Finally, the optimal control problem is to compute
the switching vector τ̄ = (k+dk, . . . , k+M−1+dk+M−1)

�

that minimizes the performance term J defined by

J =
1

2

∫ k+M

k

(
vc(t)− vc,ref

)2
dt, (12)

subject to the constraints i�(t) ≤ i�,max for every t ∈ [k, k+
M ]. This problem is solved at the starting time of each cycle
k for the prediction horizon of M cycles, and the problems
at the various cycle times may be different from each other

3Since rc is an internal resistance of the capacitor, the “measurement” of
vc could be derived from measurements of output voltage, output current
and inductor current.



according to the measured values of vs(·) and io(·) at the
start of each cycle.

To test out the timing-optimization algorithm on this
problem, we used vc,ref = 1 and i�,max = 3. We addressed
the constraint by using the penalty function Ra(z) defined
in (8) with a = 50, and solved the corresponding problem
of minimizing the function Ja,c, defined by

Ja,c =

∫ k+M

k

(1
2

(
vc(t)− vc,ref

)2
+Ra

(
i�(t)− i�,max

))
dt, (13)

with the penalty term c = 1.0. As for the sources, we let the
voltage source have the constant value vs(t) = 1.8, while the
current source had the value io(t) = 1.0 during the cycles 1-
30 and 61-90 and io(t) = 2.0 during cycles 31-60, as shown
in Figure 2(a). The prediction horizon was M = 2, the initial
condition was x(0) = (0, 0)�, and the parameters α and β
in Algorithm 1 were set to α = β = 0.5.

Algorithm 1 was used to solve this PWM problem and the
results are shown in Figure 2 (b)-(e). Part (b) of the figure
shows the computed optimal duty ratios dk as a function of
the cycle-index k, and we discern spikes at cycles 31 and
61 that are due to the changes in the current source io. Part
(c) shows the voltage vc as a function of the cycles 1-90,
and we discern a rise from an initial value of 0 to about the
target value of vc,ref = 1 in about 8 cycles. We also note
small deviations from the desirable value right after cycles
30 and 60, and again this is due to the changes in io(t);
however, the algorithm recovers from them quickly. Part (d)
highlights these deviations by zooming the graph of part (c)
on the cycle-range of 20-70. Finally, part (e) shows the graph
of the current, and it is evident that the constraint i�(t) ≤ 3
is satisfied for every cycle.

Comparing these results to those obtained in [2] for
the same problem, we note that in both cases vc reached
its desirable value quickly. However, in [2] the inequality
constraint i�(t) ≤ i�,max was violated during several cycles,
and we ascribe this to the fact that the cycle times are
the same as the switching period, and hence perhaps large
enough to cause substantial deviations in the state variables.
In contrast, our algorithm’s ability to handle a continuum of
state constraints is defined by a different kind of resolution,
namely its sampling resolution used for numerical integration
of the differential equations; this is much finer than the
sampling resolution in [2] and hence it seems to reduce the
magnitude of the state deviations.

B. Optimal Mode-Scheduling for Acyclic Systems

This subsection concerns an alternative problem to the
PWM, where the switching regimes do not have cycles of
a constant length. We assume the same system as in the
previous section. Furthermore, we consider a given horizon
of length T , and hence the number of switchings in the
horizon is to be determined. The objective is to minimize
a function like J defined in (2) subject to a continuum
of inequality constraints on the state, and to this end we
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Fig. 2. Results of Algorithm 1 for the PWM problem

formulate the problem as a scheduling optimization problem
and use Algorithm 2 for its solution. We point out that this
problem was not considered in [2] and hence we do not have
a basis for a close comparison.

The system is defined according to Equation (10), and
the control v is associated with a mode-sequence σ ∈ Σ as
described in Section II. The cost functional J(σ) is defined
in a way similar to (12) except that the integral is taken over
the horizon interval [0, T ], and thus,

J(σ) =
1

2

∫ T

0

(
vc(t)− vc,ref

)2
dt. (14)

We seek to minimize J(σ) subject to the constraints i�(t) ≤
i�,max for all t ∈ [0, T ]. We apply the same penalty function
approach as in the last subsection, and hence we minimize
the function Ja,c defined by

Ja,c =

∫ T

0

(1
2

(
vc(t)− vc,ref

)2
+Ra

(
i�(t)− i�,max

))
dt.

(15)
We set T = 20, η = 0.9 in Algorithm 2, and vs(t) = 1.8
and io(t) = 1.0 ∀t ∈ [0, T ]; all other parameters have the
same values as for the problem described in the previous
subsection.

The initial value of the control was set to consist of a
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Fig. 3. Result of Algorithm 2 for the scheduling optimization problem

single switching from L to H at the mid-point of the horizon
interval, namely, v(t) = 0 for t ∈ [0, T

2 ) and v(t) = 1 for
t ∈ [T2 , T ]. The algorithm was run for 100 iterations, and the
results are shown in Figure 3. Part (a) depicts the value of the
performance functional J(σk) as a function of the iteration
count k, and we clearly see a decrease from the initial value
of 33.0 to 1.6, most of it in the first 10 iterations. Part (b)
shows the graph of Dσ for the surrogate cost functional Ja,c,
and we discern a convergence to 0, which suggests that the
computed schedules converge towards a stationary point. For
the last iteration, the graph of the control v(t), t ∈ [0, T ], is
shown in part (c), where we note that the switching becomes
increasingly rapid in certain regions, suggesting a sliding
mode at the limit. Part (d) shows the graph of the associated
capacitor voltage vc(t), and we see that it hovers around the
desirable value of 1 after about 8 iterations. Finally, part (e)
depicts the graph of the corresponding inductor current i�(t),
and we see that it violates the constraints only by minor, and
barely discernible amounts.

IV. CONCLUSIONS

This paper considers the problem of optimal mode-
scheduling in the specific context of switching circuits, and
it tests two algorithms, recently developed by the authors, for
its solution. The general problem addressed in the paper is to

regulate the voltage in a DC-DC converter circuit by deter-
mining a suitable switching regime while observing upper-
bound constraints on the current. Two specific problems are
considered: the first is to optimize the duty ratio in a PWM
system with fixed cycle times, and the second is to determine
an optimal switching schedule without regard to a fixed cycle
time. In both cases the algorithms exhibited fast convergence,
and were shown to handle the constraints in an efficient
manner.
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