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Research Area

• Temporal pattern recognition/modeling

– With hybrid systems
(discrete-event systems & dynamical systems)

• Apply to human behavior/communication analysis

– Face motion analysis, gaze understanding, lipreading, etc.
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Automaton, etc.

Decisions / rules (Cyber World)

Differential equations

Law of nature (Physical World)



Research Area

• Temporal pattern recognition/modeling

– With hybrid systems

• Apply to human behavior/communication analysis
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Mathematical modeling of human interaction…

Too complicated … Decided to start from simpler “agents”

(e.g., robots/software agents, animals, etc.)

Hybrid 
system

1

Hybrid 
system 
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Visiting Georgia Tech. (2010.6.8～2012.6.7)

• Georgia Institute of Technology (Georgia Tech, GT)

– JSPS Postdoc fellowship

• Georgia Robotics and Intelligent Systems (GRITS)

• Prof. Magnus Egerstedt

• Research area: Control theory＋Robotics

– Hybrid system

– Networked control systems

– Mobile Robots
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Controlling Collective Behaviors



Modeling Collective Behavior

Information-exchange networks

Motion of each agent is determined by the local 

interaction with its neighbors



Leader-follower Networks

Inject inputs to the network



Leader-follower Networks

Inject inputs to the network

Driving nodes propagate external inputs

Q. Which node affects the group the most?

Q. How to measure its influence?

Controllability of networked systems (Rahmani,2009)

Manipulability of networked systems (Kawashima 2014)



r

Robot-arm manipulability
[Yoshikawa 1985]

Leader-follower manipulability

Kinematic relation

Velocity of end-effector is directly 
connected with the angular velocity

leaders’ vel.

followers’ vel.

angular velocity
of joints

end-effector
velocity

Ratio of the follower’s response to 
the leaders’ input

ሶ𝑟𝑇𝑊𝑟 ሶ𝑟

ሶ𝜃𝑇𝑊𝜃
ሶ𝜃

𝑚 =
ሶ𝑥𝑓
𝑇𝑄𝑓 ሶ𝑥𝑓

ሶ𝑥ℓ
𝑇𝑄ℓ ሶ𝑥ℓ

𝑟 = 𝑓 𝜃 ,    ሶ𝑟 = ቚ
𝜕𝑓

𝜕𝜃 𝜃
ሶ𝜃

𝑟 :  states of end-effector 
𝜃 :  joint angles
𝑊𝑟 ,𝑊𝜃 ≻ 0 : weight matrices

ሶ𝑥𝑓(𝑡) = −
𝜕ℰ 𝑥𝑓, 𝑥ℓ

𝜕𝑥𝑓

𝑇
ሶ𝑥ℓ 𝑡 = 𝑢 𝑡 : given

Dynamics of agents



Example: online leader selection

where

Temporal change of           in N=3 case 

Online leader selection (Find most influential agents)

[Kawashima+ 2012]



Controlling/Navigating Fish School

• To control real fish group via 
imitated fish (driving nodes), a
precise model of fish collective 
behavior is required

– We focus on a low density group

?

x2
x1 : Imitated fish 
(driving node)

x4

x3

𝑑𝑥1
𝑑𝑡

= 𝑓(𝑥1)

𝑑𝑥2
𝑑𝑡

= 𝑓(𝑥1, 𝑥2, 𝑥4)

𝑑𝑥3
𝑑𝑡

= 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑑𝑥4
𝑑𝑡

= 𝑓(𝑥1, 𝑥2, 𝑥4)

But, what is an appropriate fish model?

http://www.belfasttelegraph.co.uk/breakingnews/offbeat/secret-of-

herding-sheep-discovered-30541127.html

𝑢



Models of Fish Collective Behavior

• Interconnected individual (differential eq.) models
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Too simple to predict actual fish behavior

Individual behavior is determined 

by neighbors

Swarm Torus

Approach

– Learn individual-level and 
network-level dynamics from data

Dynamic parallel Highly parallel
[Couzin+, 2002]

[Reynolds,1987]

Separation Alignment Cohesion



Data-Driven Modeling

• How to obtain large dataset of trajectories including
a variety of individual-level interaction?

→ Use visual stimuli for data collection and evaluation

1. Vision is a major modality for fish
(e.g., optomotor response)

2. System-identification framework: 
informative than passive observation

3. Good for long-term experiments
(compared to robots)

Camera

Fish 

tank
Display

Detection & Tracking
Graphics 

generation

Real-time feedback loop

Model update

Controller

Model-based 

prediction/control
[Ishikane et al., 2013]



Interaction Analysis Using Visual Stimuli

• Attractive stimuli

– Fish-like graphics

– Analyze real fish
vs fish graphics

• Repulsive stimuli

– Induce group-level state 
transition:  shoaling to 
schooling

– Analyze interaction 
among real fish

14

Side view
Top view



Preliminary Experiments (1)

Is fish graphics useful? (really attract live fish group)?

• Setting

– Tank: 35cm(W) x 30(H) x 20(D)
• Area: 20 → 5cm(D) (with a separator)

– Side-view camera: 15fps

– Fish: Three Rummy-nose tetra
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t

xGraphics

t

xFish

Display Fish tank

camera

2d tracking



Can fish graphics attract real fish?

• Fish-like graphics (reciprocating motion in 𝑥 axis)

Frequency 

Sync.
Frequency

of the 

stimulus

CG presented

Stimuli starts

time

-p
o
s
it
io

n

𝑥-axis
stimuli

[兼近+ CVIM2014]



Can fish graphics attract real fish?

Presented
Presented

Presented

Correlation of real 

fish and graphics

(phase sync.)

Sequence 1 Sequence 2 Sequence 3

• Fish can move with similar frequency as stimuli 
without presenting stimuli

How about phase?
Presented



Preliminary Experiments (2)

Can we estimate interaction network of fish group?

• Induce a group-level state transition

– “aggregation/shoaling” to “schooling” 

• Setting

– Fish tank: 30 (W) x 30 (D) x 10 cm (H)

– Top-view camera: 60fps / Fish: 10

• Tracking positions by a mixture model

– Each fish is modeled as an ellipse

Input Binarized

BG
Subt. EM

Mixture
model



Example of Induced Schooling Behavior

• Induced “schooling” behavior and tracking result

Visual

stimuli→

(Display)

Tracking result (only x,y position)

Frame: 8100-8200 8200-8300 8300-8400

Maximum rectangle size

Group

polarity

Stimuli

Average

speed



ሶ𝒙𝑖(𝑡 + 𝜏) = ෍

𝑗=1,𝑗≠𝑖

𝑁

𝑤𝑖𝑗

𝒙𝑗 𝑡 − 𝒙𝑖 𝑡

𝒙𝑗 𝑡 − 𝒙𝑖 𝑡

Modeling Interaction
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“Consensus model” is often used in existing studies
[Raynolds 1987, Couzin 2002]

• Repulsion

– Move away from neighbors

• Orientation

– Align with neighbors

• Attraction

– Move toward neighbors

Degree of influence from fish 𝑗

Neighbors are determined

by zones

Position of fish 𝑖Position of fish 𝑗

Velocity of fish 𝑖



Estimation of Network Topology 

• Individual behavior model with autonomous term

ሶ𝒙𝑖(𝑡 + 𝜏) = ෍

𝑗=1,𝑗≠𝑖

𝑁

𝑤𝑖𝑗

𝒙𝑗 𝑡 − 𝒙𝑖 𝑡

𝒙𝑗 𝑡 − 𝒙𝑖 𝑡
Target position

Autonomous termCoordination term

Degree of influence from fish 𝑗 Degree of moving toward 

fish i’s own target

• Short-term ridge regression with constraints

– Assume 𝑤𝑖𝑗(𝑗 ≠ 𝑖), 𝑤𝑖𝑖, 𝒄𝑖 are constant in a time window 

and estimate them with some constraints:

– 𝑤𝑖𝑗(𝑗 ≠ 𝑖), 𝑤𝑖𝑖 ≥ 0 (only “attraction”)

–
ሶ𝒙𝑖
𝑇(𝒙𝑗−𝒙𝑖)

ሶ𝒙𝑖
𝑇 (𝒙𝑗−𝒙𝑖)

≥ cos𝛼 (visual field)

– ሶ𝒙𝑖
𝑇 𝒄𝑖 − 𝒙𝑖 ≥ 0,𝒄𝑚𝑖𝑛 ≤ 𝒄𝑖 ≤ 𝒄𝑚𝑎𝑥 (target is in front & in the tank)

ሶ𝒙𝑖
𝛼

𝒙𝑗 − 𝒙𝑖

+𝑤𝑖𝑖(𝒄𝑖 − 𝒙𝑖(𝑡))



Estimation of Network Topology 

• How schooling behavior emerges?

– Compare individuals using estimated weights {𝑤𝑖𝑗}
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ሶ𝒙𝑖(𝑡 + 𝜏) = ෍

𝑗=1,𝑗≠𝑖

𝑁

𝑤𝑖𝑗

𝒙𝑗 𝑡 − 𝒙𝑖 𝑡

𝒙𝑗 𝑡 − 𝒙𝑖 𝑡
+ 𝑤𝑖𝑖(𝒄𝑖 − 𝒙𝑖(𝑡))

Target position

Autonomous term
Coordination term

𝑖 = 1 (figures show weighted edges for only Fish#01)



Roles of Individuals?

• Coordinated vs. Autonomous
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ሶ𝒙𝑖 = ෍

𝑗=1,𝑗≠𝑖

𝑁

𝑤𝑖𝑗

𝒙𝑗 − 𝒙𝑖

𝒙𝑗 − 𝒙𝑖
+ 𝑤𝑖𝑖(𝒄𝑖 − 𝒙𝑖)

Autonomous
Coordination

Interval (frames) Fish #1 Fish #9 Fish #5

𝑃𝑎 (8100 − 8200) Low speed Low speed Auto. (𝑤𝑖𝑖) >> 
Coordination (𝑤𝑖𝑗)

𝑃𝑐 (8300 − 8400) Following others Leading others Leading others

γ = ln
σ𝑡∈P𝑤𝑖𝑖 𝑡

σ𝑡∈P σ𝑗=1,𝑗≠𝑖
𝑁 𝑤𝑖𝑗 (𝑡)

𝑃: time interval (part)

γ
(biased)



Toward Control of Fish Group

• Introduce a framework of model estimation using visual 
stimuli and fish-group response

– Design of visual stimuli + 2D tracking
• Attractive, repulsive design

– Estimation of interaction 
topology change

• Future work

– Learning feed-back control of visual stimuli
reinforcement learning and behavior model (dynamics of w)

– Fish robots & 3D tracking → Fish school navigation
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Feed-back

Thanks to Yu Kanechika (B4, M2 student; graduated 2014, 2016)



3D Tracking

• 2D tracking limits the area of group motion
→ 3D position & orientation (6 DOG) [Y. Zhong (M2) 2015]
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Coordinated Energy Management



50 4951Frequency

Demand

H
yd

ro

O
il

Power Balancing

• Supply = Demand (+Loss) [W] should be satisfied for all time

– If not, frequency (50/60Hz) cannot be maintained

• (In the future) Volatility of power supply & demand

– Battery capacity is still limited (and expensive)

Electric Vehicle (EV) require 
several kW x several hours 
for daily charging 

Total supply = Total demand

Solar & wind power strongly 
depend on weather, etc.

Rainy
Cloudy

Sunny
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• Future

Relation between Supply and Demand

• Until now

Demand Side Management

Demand Side

Use electricity as much as they want

Supply Side Follow

Follows the total demand

Fluctuation of renewable energy

Supply Side

→Many power plants are required only for peak periods (inefficient)

Demand Side

Become more flexible
Controllers are installed to manage devices
(e.g., A/C, EV ) by considering supply side
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End Users are going to be “Smart”

• End user:  a unit of decision making for energy management
– Household, office, factory, etc.

• Energy Management System (EMS) is installed
– Smart meter, communication device, controller of appliances

• Prosumer: Producer + Consumer
• Autonomous (software) agents

– Energy-on-Demand system (our lab)
– AiSEG (Panasonic), Feminity (Toshiba), ...

Eco house in Kyoto 
(From http://www.kyo-
ecohouse.jp))

S
B

M
C
B

M
C
B

M
C
B

M
C
B

G
ri

d
 (

u
ti

lit
y)

P
ri

va
te

Adapter-type Smart Outlet

Smart Outlet (sensor/controller)

Smart Appliances

Smart Meter (Grid)

Distribution
board

PV generator Battery

Home Server
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http://www.kyo-ecohouse.jp/


Coordination of End Users’ EMS

• Demand Response • Coordination as a community

Sell reduced 
power

Coordinator
system

Sensing

Control/

Automated DR

Operator

Electricity markets, 
Utilities

Negotiation (M2M)

Demand-side management “from demand side”

Office building
Multi-dwelling

Sharing similar objectives (peak shaving, etc.)

Community

Controlled 
by own 

EMS

Request

I can 
generate 

2kW in the 
morning

I can shift my 
consumption to 

the morning
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Community-based Coordination Scenario

• Distributed architecture
– Each end user has own controller (EMS, software agent)

• EMS negotiate their plans via the coordinator
1. Day-ahead scheduling (forecasting one day)
2. Online coordination (no forecast)

EMS

EMS

Power grid

Factory

Office, condominium

IPP

EMS

ITC

-1000W

EMS

Request
power

Community

Control 
inside the 
household

+2000W

-2000W

Extra power
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Multiple Objectives (Each Household & Group)

• Flatten the peak power while preserving each household’s satisfaction:

HEMS

HEMS

HEMS

HEMS

𝑓1(𝑥1)

𝑓2(𝑥2)
𝑓3(𝑥3)

𝑓𝑁(𝑥𝑁)

？

→minimize over 𝑥𝑖 (𝑖 = 1, … ,𝑁)𝑥𝑖 ∈ ℝ𝑇： One day profile of household 
𝑖

time1 T

P
o

w
er

[W
]

𝑓𝑖(𝑥𝑖)

𝑔(෍
𝑖
𝑥𝑖 )

time1 T

P
o

w
er

[W
]

σ𝑖 𝑥𝑖：Total demand of all the households

σ𝑖Objective of household 𝑖

+Objective of the group

𝑥𝑗：One day profile of household 𝑗

time1 T

P
o

w
er

[W
]

σ(sum of each time slot)

𝑔(෍

𝑖

𝑥𝑖)

How should HEMSs and coordinator system interact 
with each other?
Without disclosing internal information (objective functions)

Dissatisfaction (gap from 
normal consumption profile)

Penalty function for 
peak
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Coordinator

Idea1: Profile-based Distributed Optimization

• Flatten the peak power while preserving each household’s satisfaction：

minimize
𝑥1,…,𝑥𝑁

σ𝑖 𝑓𝑖 𝑥𝑖 + 𝑔(σ𝑖 𝑥𝑖)

• Coordination of distributed controllers (autonomous agents)
– Each household does not disclose their objective function 𝑓𝑖
☺ Scalable; can integrate different types of EMS; avoid some privacy issues

Penalty function for peak

HEMS HEMS HEMS HEMS

𝑓1(𝑥1) 𝑓2(𝑥2) 𝑓3(𝑥3) 𝑓𝑁(𝑥𝑁)
Repeat several 
iterations

𝑥𝑁
𝑥3𝑥2

𝑥1 Coordinator:
Broadcast 
profile

𝑏 𝑏 𝑏
𝑏 ∈ ℝ𝑇

Want to use in 
the morning

P
o

w
er

T

User:
preferred 
profile 𝑥𝑖

Morning Morning Morning

Who can avoid 
morning?

(broadcast)

Noon is OKEvening is OK

Dissatisfaction of using 𝑥𝑖

Profile-based negotiation to find best plan 𝑥𝑖(𝑖 = 1,… , 𝑁)
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Control in a Household

• Change of device usage: time shift & power level

• We focus on time shift (scheduling) of appliance usage in a 
household as it has a large effect in power flattening
– (Ex.) EV charging, A/C, dryer, dish washer, rice cooker

Pot

A/C (precooling)

How to model normal usage patterns and the 
flexibility of changing it in each household?
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Idea 2: Probabilistic Model of Usage Timing

• Hidden Semi-Markov Model (used in speech generation) [黒瀬+ 2013]
– Can model the flexibility of time-shift (“mode switching” timing)
– All the model parameters can be learned from daily usage data

Duration 𝜏𝑝
(𝜏
)

Duration𝑝
(𝜏
)

Duration

𝑝
(𝜏
)

Mode
1

Mode
2

Mode
3

𝑃21

𝑃23

Mode1 Mode 2 Mode 3Mode 1 Mode 2

D
em

an
d

 [
W

]

TTime

Duration
distribution

Output probability

1

(Ex.) Standby Charging After chargingStandby Charging

Training data

Smart tap 
(smart plug)
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Normal consumption pattern of a device



Distributed Mode Scheduling

• Flatten the peak power while preserving each household’s satisfaction

minimize
𝑥1,…,𝑥𝑁

σ𝑖 𝑓𝑖 𝑥𝑖 + 𝑔(σ𝑖 𝑥𝑖)

• Household need to send only their profiles
– The coordinator do not need to know each objective function

HEMS HEMS HEMS HEMS
Mode

1

Mode
2

Mode
3

𝑓1(𝑥1) 𝑓2(𝑥2) 𝑓3(𝑥3) 𝑓𝑁(𝑥𝑁)

𝑔 σ𝑖 𝑥𝑖

Each household optimizes its mode scheduling
in each iteration via dynamic programming

Mode
1

Mode
3

Mode
2

Mode
4

𝑥𝑁
𝑥3𝑥2

𝑥1

Coordinator:
Broadcast
profile 𝑏 ∈ ℝ𝑇𝑏 𝑏 𝑏

𝑏
Households:
Preferred profile
𝑥𝑖 ∈ ℝ𝑇

P
o

w
er

T

Profile 𝑥𝑖

Coordinator

[Kawashima, et al. SmartGridComm2013]
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Simulation (Day-ahead Scheduling)

• PHEV charging 
– 1kW x 3hours in a day

Group 1 Group 2

𝑔
σ
𝑖
𝑥
𝑖

k  (# of Iteration)

• Two groups with different flexibility (given manually)

– Group 1 (20 households)

• Large flexibility of changing the start time

– Group 2 (20 households)

• Small flexibility

• Result

– Almost converge with in 20 iterations

– Realize group objective (peak shaving) while
taking into account users’ flexibility

Mode1
(Stand-by)

Mode 2
(charging)

Mode 3
(finished)

P
o

w
er

Time

Flexibility of the start 
time of charging
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Simulation (Online Negotiation)

• Some households do not follow the schedule

• Online coordination

– Other households 
compensate the changes 
using online negotiation 
via the coordinator

55% 70% 85%
changed

Day-ahead
coordination

No coordination

Some households change their 
usage from their scheduled plan

38

[Verschae+ 2014]



Summary

• Power balancing is crucial for electrical grid

– Supply = Demand (+Loss) [W] should be satisfied for all time

– Electricity is difficult to store (battery capacity is limited) 

• In future, demand-side management will be important

→ This is essentially a multi-objective optimization
– Users have their objective (e.g., maintain their quality of life)

– Community has an objective (e.g., reduce the total peak)

39

Using distributed optimization, we can decompose
user-side optimization and community-level optimization.

Global optimization → Local optimizations + Communication

→ Possible to design flexible coordination



Controlling Distributed Cooperative Systems

• Controlling collective behaviors

– Leader-follower control of mobile robots and fish school

• Designing distributed cooperative systems

– Distributed optimization of energy management systems

40

Designable artificial system

(Deductive)

Animals, human

(Inductive)
(Artificial systems with 

confidential design, 

complex systems)

Objective function Objective function

Interaction rules Interaction rules

Observed behavior Observed behavior

Agent model EstimationOptimization
Machine 

Learning

Navigation, assistance
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