7S [N N
52 KYOTO UNIV.

Controlling Distributed Cooperative
Systems — Robots, Fish, Energy

Graduate School of Informatics,
Kyoto University

Hiroaki Kawashima




Research Area

e Temporal pattern recognition/modeling

— With hybrid systems

(discrete-event systems & dynamical systems)

Automaton, etc. Differential equations
Decisions / rules (Cyber World) Law of nature (Physical World)

e Apply to human behavior/communication analysis

— Face motion analysis, gaze understanding, lipreading, etc.



Research Area

e Temporal pattern recognition/modeling
— With hybrid systems

e Apply to human behavio@nunic@nalysis

—

Mathematical modeling of human interaction...
Too complicated ... Decided to start from simpler “agents”
(e.g., robots/software agents, animals, etc.)

Mental states Mental states
( Mode \ ( \

Mode




Visiting Georgia Tech. (2010.6.8~2012.6.7)

Georgia Institute of Technology (Georgia Tech, GT)
— JSPS Postdoc fellowship

Georgia Robotics and Intelligent Systems (GRITS)
Prof. Magnus Egerstedt

Research area: Control theory -+ Robotics
— Hybrid system
— Networked control systems
— Mobile Robots




S
KYOTO UNIV.

Controlling Collective Behaviors



Modeling Collective Behavior

P

Information-exchange networks

Motion of each agent is determined by the local
interaction with its neighbors

T; = Z f(a:z-,xj) Z:].,,N
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G

(V.E)



Leader-follower Networks

Inject inputs to the network JEN()
Uu
N U
i=| | =P




Leader-follower Networks

Driving nodes propagate external inputs
Q. Which node affects the group the most?
Q. How to measure its influence?

Controllability of networked systems (Rahmani,2009)

Inject Ir Manipulability of networked systems (Kawashima 2014)
w e o
T y
= | ! | =F(x)
_j:N .




Robot-arm manipulability  Leader-follower manipulability
[Yoshikawa 1985]
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Example: online leader selection

Online leader selection (Find most influential agents)
((t) = arg max (i, z(t)) where L(t) = {3 | k;(x(t)) > 0}
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Controlling/Navigating Fish School

e To control real fish group via
imitated fish (driving nodes), a

precise model of fish collective
behavior is required

. http:(/www.blftteegrp.c.k/brekinnes/offbeat/secrof-
—_ We focus On a IOW denSIty group herding-sheep-discovered-30541127.html
~dxq
« X, : Imitated fish dt fi) u
2 . .
(driving node)
dx,

e I < dr f (1, %2, x4)

dt = f(x1»x2;x3»x4)

dx,
\_ dt = f(x1, %2, X4)

But, what is an appropriate fish model?




Models of Fish Collective Behavior

e |nterconnected individual (differential eq.) models

Separation Alignment Cohesion
Individual behavior is determined 4/ N /b }; 4
by neighbors - NI [ o
[Reynolds,1987]

[Couzin+, 2002]

Too simple to predict actual fish behavior

_,/,- '_ . [
\ Approach
bt » — Learn individual-level and
/ network-level dynamics from data

,.7 _— 12




Data-Driven Modeling

e How to obtain large dataset of trajectories including
a variety of individual-level interaction?
— Use visual stimuli for data collection and evaluation

1. Vision is a major modality for fish
(e.g., optomotor response)

2. System-identification framework:
informative than passive observation

3. Good for long-term experiments
(compared to robots)

F— g B A

Graphics

generation Detection & Tracking
| Controllerl

Model-based

prediction/control Model update

[Ishikane et al., 2013]



Interaction Analysis Using Visual Stimuli

e Attractive stimuli e Repulsive stimuli

— Fish-like graphics — Induce group-level state

vs fish graphics schooling
— Analyze interaction

among real fish
Top view Cameﬁ'zb

’mk
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Side view




Preliminary Experiments (1)

Is fish graphics useful? (really attract live fish group)?

e Setting

— Fish: Three Rummy-nose tetra

~Y

Graphics

—
-

~Y

Displa Fish tank
— Tank: 35cm(W) x 30(H) x 20(D) :
e Area: 20 = 5cm(D) (with a separator) *
— Side-view camera: 15fps camera

2d tracking
Fish X

E

15



Can fish graphics attract real fish?

[3£3E+ CVIM2014]

e Fish-like graphics (reciprocating motion in x axis)

Frequency
Sync.

x-position

Stimuli starts x-axis

E 0.4

g Frequency
S 02

3 of the

@ .
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frame



Can fish graphics attract real fish?

e Fish can move with similar frequency as stimuli
without presenting stimuli

o °
w S
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Preliminary Experiments (2)

Can we estimate interaction network of fish group?
.ﬁi \

e [nduce a group-level state transition
— “aggregation/shoaling” to “schooling”

e Setting
— Fish tank: 30 (W) x 30 (D) x 10 cm (H)
— Top-view camera: 60fps / Fish: 10

e Tracking positions by a mixture model

— Each fish is modeled as an ellipse

4

Mixture -
model

Binarized




Example of Induced Schooling Behavior

e |nduced “schooling” behawor and tracking result

Maximum rectangle size

tl m LH[I = position c‘v visual stimuli square
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Modeling Interaction

“Consensus model” is often used in existing studies

[Raynolds 1987, Couzin 2002]
Neighbors are determined

® Repulsion by zones

— Move away from neighbors \
e QOrientation y
W1y ‘

— Align with neighbors

Attraction
— Move toward neigh ./

Posmon of fish j Posmon of fish i

N
) x] ) —x (D)
xl(t +1) = z v |x;(®) — x; (0|

Degree of mfluence from fish j

Velocity of fish i J= 1'1*”

20



Estimation of Network Topology

¢ Individual behavior model with autonomous term

Coordination term Autonomous term
(< () — x;(t)
x. — .
. ] l
X (t+71) = E WU -I-[Wu(Cl x; (1)) |
L=1j-‘#l ”x] (t) T xl(t)l / }_
N— arget position

Degree of influence from fish j Degree of moving toward
fish i’'s own target

e Short-term ridge regression with constraints

— Assume w;;(j # i), wy, €; are constant in a time window
and estimate them with some constraints:

- w;(j # i), w; =0 (only “attraction”) -{'\i\qa
XL (xi—x: ) . ¥
(X)) cos a (visual field) Xj — X; "

& M=ol = !

- X (c; = %)) = 0,Cmin < €; < Cmay (targetis in front & in the tank)



Estimation of Network Topology

e How schooling behavior emerges?

— Compare individuals using estimated weights {Wij}

Coordination term

Autonomous term

. [~ 50 —x() |
Xi(t+71) = -=1zj¢iwu ||x](t) — xl(t)J [’Vu(c xi(t)) ]

&I'arget position

S E e s e s s

g Sz s s e e
e e e e e

i = 1 (figures show weighted edges for only Fish#01) 22



Roles of Individuals?

e Coordinated vs. Autonomous

[ZtEP Wu(t) o
n[ZtEPZJ 1,j=i Wij (t)] & ‘i —x, Autonomous

+|w;i(c; — x;)

B s e s s B F

P: time interval (part) l T P lxy = il

B . : . = EI
4l | I fish #01 | I fish #09 | | Lq__ﬁsh#ﬂﬁ

y 2
Giased | DO DN | | |
0 0 0
P, PP P P P P, PP
interval (frames) | Fish #1 Fish#9  [Fish#s

P, (8100 —8200) Low speed Low speed Auto. (w;;) >>
Coordination (w;;)

P. (8300 — 8400) Following others Leading others Leading others



Toward Control of Fish Group

e |[ntroduce a framework of model estimation using visual
stimuli and fish-group response

— Design of visual stimuli + 2D tracking -

e Attractive, repulsive design L
y - .
N

— Estimation of interaction
X

topology change

Feed-back
e Future work

— Learning feed-back control of visual stimuli
reinforcement learning and behavior model (dynamics of w)

— Fish robots & 3D tracking > Fish school navigation

Thanks to Yu Kanechika (B4, M2 student; graduated 2014, 2016)
24



3D Tracking

e 2D tracking limits the area of group motion
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Power Balancing

e Supply = Demand (+Loss) [W] should be satisfied for all time
— If not, frequency (50/60Hz) cannot be maintained

e (In the future) Volatility of power supply & demand
— Battery capacity is still limited (and expensive)

Frequenc 50 ) ) )
AuEney 51 08 49 Electric Vehicle (EV) require
several kW x several hours

for daily charging

Solar & wind power strongly

depend on weather, etc.
70} Sunny e

Demand

27



Relation between Supply and Demand

e Until now
Supply Side Follow > Demand Side
Follows the total demand Use electricity as much as they want

- Many power plants are required only for peak periods (inefficient)

Supply Side “ Demand Side

Fluctuation of renewable energy Become more flexible

e Future

Controllers are installed to manage devices
(e.g., A/C, EV ) by considering supply side

Demand Side Management




End Users are going to be “Smart”

e End user: a unit of decision making for energy management
— Household, office, factory, etc.

e Energy Management System (EMS) is installed
— Smart meter, communication device, controller of appliances

e Prosumer: Producer + Consumer

e Autonomous (software) agents

— Energy-on-Demand system (our lab)
— AISEG (Panasonic), Feminity (Toshibal .

?mart Meter (Grid)

PV generator Battery

R -

Distribution

—-——
—

e |
S == - IE@
— ’
- Smart Appliances r Adapter-type Smart Outlet
/ g |

ca-house in Kyoto
(FPOmM Nttp:// WWW.KYO-
ecohouse.jp))

=

Private

Grid (utility)

29


http://www.kyo-ecohouse.jp/

Coordination of End Users’ EMS

e Demand Response e Coordination as a community

Electricity markets; Sell reduced

Utilities \ bower

Coordinator
systedn

Co
| can | can shift my
generate Negotiapion (M2 consumption to
2kW in the ) A
morning_—._ RN
S ' \ i Controlled
, by own
iy N EMS
/\ Sharing similar objectives [pearshaving, etc.)
b N

Multisdwelling..

== Office building

Demand-side management “from demand side”

30



Community-based Coordination Scenario

e Distributed architecture
— Each end user has own controller (EMS, software agent)

e EMS negotiate their plans via the coordinator
1. Day-ahead scheduling (forecasting one day)
2.  Online coordination (no forecast)

Extra power

A T v
Factory \g;ﬁv; ::ﬂ [ /
" -1000W w o]
——

- Request : Control
4 & ..
power | <\ inside the

31



Multiple Objectives (Each Household & Group)

e Flatten the peak power while preserving each household’s satisfaction:

C _ f (X) Dissatisfaction (gap from
Zi Ob]eCtlve of household i LAL7 normal consumption profile)

+Objective of the group g(z x;) Penalty function for

peak

= aXi € R : One day profile of household - minimize over x; (i = 1,...,N)
= |1

e en
o'g 1 Xj:One day profile of household j 2 (xz)

= = /- =

|l e (=

S .

1 . How should HEMSs and coordinator system interact
y(sumof With each other?

|—|_|_|—|_|—| Without disclosing internal information (objective functions)
= [ |

=3 LELIR B B B INCLLLLEE HFUS \ / /
Z | 2.; X; : Total demand of all the households <M _‘ ? HEMS
A L 111l Ll ¢

1 T time
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ldeal: Profile-based Distributed Optimization

e Flatten the peak power while preserving each household’s satisfaction:

minimize ),|f;(x;) |+ |9(; x;)

X1, XN

Dissatisfaction of using x; Penalty function for peak

e Coordination of distributed controllers (autonomous agents)
— Each household does not disclose their objective function f;
© Scalable; can integrate different types of EMS; avoid some privacy issues

Profile-based negotiation to find best plan x;(i =1, ..., N)

Who can avoid
morning?

User: . _
oreferred g“: r_\ Coordinator (broadcast)
. (a
pI‘Oflle *i . b eR’ Coordinator:
x EEmER J
: 3 b \ Broadcast
Want to use in - _ orofile
LS T Evening is OK Morning SN
’ — & J = Noqn is OK Repeat several
THEMS " HEMS . HEMS ........ | Hes B iterations

33



Control in a Household

e Change of device usage: time shift & power level

e We focus on time shift (scheduling) of appliance usage in a
household as it has a large effect in power flattening

— (Ex.) EV charging, A/C, dryer, dish washer, rice cooker

FromI 12/1C ) — E
2000 —
1800 =
1600 i =
1400 Pot c | =
=, 1200 - —
%3 100 —
" g0 » A/C (precooling)
60( T
40 %
200 1

How to model normal usage patterns and the
flexibility of changing it in each household?

34



ldea 2: Probabilistic Model of Usage Timing

p(T

Py Mode © Training data
1 S J\ Duration 7 —
. 2 ’
Duration p Mode v‘ '
23 3 S Duration

(Ex.) Standby Charging |Standby Charging After charging

Model Mode 2 Mode 1 Mode 2 Mode 3
E Output probability
= Duration
§= distribution ‘
Q) A
% Smart tap
a Normal consumption pattern of a device

(smart plug)

7 Time T

e Hidden Semi-Markov Model (used in speech generation) [£ 4+ 2013]
— Can model the flexibility of time-shift (“mode switching” timing)
— All the model parameters can be learned from daily usage data

35



Distributed Mode Scheduling

Kawashima, et al. SmartGridComm

e Flatten the peak power while preserving each household’s satisfaction

mlnlmlzez filx)) + g xp)

Xqyene

e Household need to send only their profiles
— The coordinator do not need to know each objective function

Profile x;

‘ C: Coordinator
Coordinator:
X - Broadcast
v xs// profile b € RT
Preferred profile

Households:
x, €RT £ (x Yt \ 2 (x2). f 3 (xs) f N(XN)

Power

i { -~ — i g Mode
Mode 1
1 CHEMS . L HEMS L obeme | eesseess W HEMS A
— .. . . [ ode
Mode Each household optimizes its mode scheduling 3 M;de
) e in each iteration via dynamic programming " ‘ ——
3 4



Simulation (Day-ahead Scheduling)

e PHEV charging Group 1 Group 2

— 1kW x 3hours in a day _ a A A

20 | (lteration k = 0) - B

Flexibility of the start 0 T SRR / rrrrrr \ rrrrrr -
time of charging : 5

0 50 100 150
Time t (10min x 144)

Power

Model | Mode?2 Mode 3 Time
(Stand-by) (charging) (finished)

Total power [kW]

e Two groups with different flexibility (given manually)

— Group 1 (20 households)
e Large flexibility of changing the start time

— Group 2 (20 households) 0 | | |
e Small flexibility : LN .

e Result

— Almost converge with in 20 iterations

— Realize group objective (peak shaving) while ° ° 10 15 20

taking into account users’ flexibility k (# ofIteration)37



Simulation (Online Negotiation)

Verschae+ 201

e Some households do not follow the schedule
Dellta =0, 4§% Flexible Households Delta = 0, 30% Flexible Households Delta = 0, 15% Flexible Households
-~ | 559, No coordination | | Y0 _ 0
o S5% Moot 70% | o, 8%
5 o | . i | 3 ' changed
: B Day-ahead " | ~ !
DCE-)-IO_ . ! / Coordlnatlon\ P 7 || - 05_10 ...........
] @ ! s
° © , ! e
|
020 40 ‘ fo _ 50 150 120 9 40 GIO \ 86 160 120 020 40 60 ‘ 80 100 120
Tirdn N tan Time t (10min x 144) Time t (10min x 144)

Some households change their

usage from their scheduled plan
Delta = 20, 30% Flexible Households

e Online coordination -
— Other households %;20
compensate the changes g .l
using online negotiation
via the coordinator ]
20 100 120
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Summary

e Power balancing is crucial for electrical grid
— Supply = Demand (+Loss) [W] should be satisfied for all time
— Electricity is difficult to store (battery capacity is limited)

e |n future, demand-side management will be important

— This is essentially a multi-objective optimization
— Users have their objective (e.g., maintain their quality of life)
— Community has an objective (e.g., reduce the total peak)

Using distributed optimization, we can decompose
user-side optimization and community-level optimization.

Global optimization - Local optimizations + Communication

— Possible to design flexible coordination 39



Controlling Distributed Cooperative Systems

e Controlling collective behaviors

— Leader-follower control of mobile robots and fish school

e Designing distributed cooperative systems

— Distributed optimization of energy management systems

Designable artificial system
(Deductive)
Navigationf assistance

Obijective function

Optimization

Interaction rules

e Agent model \

Animals, human

_ Artificial systems with
(Inductive) ( 4

confidential design,
comptex-systems)

Obijective function

Estimation

Machine

Interaction rules Learning

Observed behavior

Observed behavior

40
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